
redgrease

Anders Åström

May 03, 2021

CONTENTS:

1 Introduction 1
1.1 What is Redis? . 2
1.2 What is Redis Gears? . 2
1.3 What is RedGrease? . 4
1.4 Example Use-Cases . 7
1.5 Glossary . 8

2 Quickstart Guide 9
2.1 Running Redis Gears . 9
2.2 RedGrease Installation . 11
2.3 Basic Commands . 12
2.4 RedGrease Gear Function Comparisons . 16
2.5 Cache Get Command . 22

3 RedGrease Client 29
3.1 Instantiation . 29
3.2 RedisGears Commands . 30
3.3 Get and Set Gears Configurations . 37

4 Executing Gear Functions 41
4.1 Raw Function String . 41
4.2 Script File Path . 42
4.3 GearFunction Object . 42
4.4 pyexecute API Reference . 45
4.5 on API Reference . 47

5 Builtin Runtime Functions 49
5.1 execute . 50
5.2 atomic . 51
5.3 configGet . 52
5.4 gearsConfigGet . 52
5.5 hashtag . 53
5.6 hashtag3 . 53
5.7 log . 53
5.8 GearsBuilder . 54

6 GearFunction 67
6.1 Open GearFunction . 69
6.2 Closed GearFunction . 78
6.3 KeysReader . 78
6.4 KeysOnlyReader . 80

i

6.5 StreamReader . 80
6.6 PythonReader . 81
6.7 ShardsIDReader . 81
6.8 CommandReader . 81

7 Operations 83
7.1 Map . 83
7.2 FlatMap . 83
7.3 ForEach . 84
7.4 Filter . 84
7.5 Accumulate . 84
7.6 LocalGroupBy . 85
7.7 Limit . 85
7.8 Collect . 86
7.9 Repartition . 86
7.10 Aggregate . 86
7.11 AggregateBy . 87
7.12 GroupBy . 88
7.13 BatchGroupBy . 89
7.14 Sort . 90
7.15 Distinct . 90
7.16 Count . 90
7.17 CountBy . 91
7.18 Avg . 91

8 Actions 93
8.1 Run . 93
8.2 Register . 94

9 Operation Callback Types 97
9.1 Registrator . 97
9.2 Extractor . 97
9.3 Mapper . 98
9.4 Expander . 98
9.5 Processor . 99
9.6 Filterer . 99
9.7 Accumulator . 99
9.8 Reducer . 100
9.9 BatchReducer . 100

10 Serverside Redis Commands 103

11 Syntactic Sugar 105
11.1 Command Function Decorator . 105
11.2 Keywords . 107

12 Command Line Tool 111

13 Utils Module 113

14 Typing Module 121

15 Data Module 127

16 Advanced Concepts 133
16.1 Redgrease Extras Options . 133

ii

16.2 Python 3.6 and 3.8+ . 135
16.3 Legacy Gear Scripts . 136

17 Support 137
17.1 Professional Support . 137
17.2 FAQ . 137
17.3 Reporting issues . 138

18 Contribute 139
18.1 Development Setup . 139
18.2 Local Testing . 140

Python Module Index 141

Index 143

iii

iv

CHAPTER

ONE

INTRODUCTION

RedGrease is a Python client and runtime package attempting to make it as easy as possible to create and execute
RedisGears functions on Redis engines with the RedisGears Module loaded.

Fig. 1: Overview

RedGrease makes it easy to write concise but expressive Python functions to query and/or react to data in Redis in
realtime. The functions are automatically distributed and run across the shards of the Redis cluster (if any), providing
an excellent balance of performance of distributed computations and expressiveness and power of Python.

It may help you create:

• Advanced analytical queries,

• Event based and streaming data processing,

• Custom Redis commands and interactions,

• And much, much more. . .

. . . all written in Python and running distributed ON your Redis nodes.

The Gear functions may include and use third party dependencies like for example numpy, requests, gensim or
pretty much any other Python package distribution you may need for your use-case.

If you are already familiar with Redis and RedisGears, then you can jump directly to the What is RedGrease? overview
or the Quickstart Guide, otherwise you can read on to get up to speed on these technologies.

1

redgrease

1.1 What is Redis?

Redis is a popular in-memory data structure store, used as a distributed, in-memory, key–value database, cache and
message broker, with optional durability, horizontal scaling and high availability. Redis supports different kinds of
abstract data structures, such as strings, lists, maps, sets, sorted sets, HyperLogLogs, bitmaps, streams, and spatial
indexes. The project is developed and maintained by RedisLabs. It is open-source software released under a BSD
3-clause license.

1.2 What is Redis Gears?

RedisGears is an official extension module for Redis, also developed by RedisLabs, which allows for distributed
Python computations on the Redis server itself.

From the official RedisGears site:

“RedisGears is a dynamic framework that enables developers to write and execute functions that implement data
flows in Redis, while abstracting away the data’s distribution and deployment. These capabilities enable efficient
data processing using multiple models in Redis with infinite programmability, while remaining simple to use in any
environment.”

When the Redis Gears module is loaded onto the Redis engines, the Redis engine command set is extended with new
commands to register, distribute, manage and run so called Gear Functions, written in Python, across across the shards
of the Redis database.

Client applications can define and submit such Python Gear Functions, either to run immediately as ‘batch jobs’, or to
be registered to be triggered on events, such as Redis keyspace changes, stream writes or external triggers. The Redis
Gears module handles all the complexities of distribution, coordination, scheduling, execution and result collection
and aggregation, of the Gear Functions.

1.2.1 What are Gear Functions?

Gear Functions are composed as a sequence of steps, or operations, such as for example Map, Filter, Aggregate,
GroupBy and more.

These operations are parameterized with Python functions, that you define according to your needs.

The steps / operations are ‘piped’ together by the Redis Gears runtime such that the output of of one step / operation
becomes the input to the subsequent step / operation, and so on.

The first step / operation of any Gear Function is always one of six available “Readers”, defining the source of the
input to the first step / operation:

• KeysReader : Redis keys and values.

• KeysOnlyReader : Redis keys.

• StreamReader : Redis Stream messages.

• PythonReader : Arbitrary Python generator.

• ShardsIDReader : Shard ID.

• CommandReader : Command arguments from application client.

2 Chapter 1. Introduction

https://redis.io/
https://redislabs.com/
https://redislabs.com/modules/redis-gears/
https://redislabs.com/
https://redislabs.com/modules/redis-gears/

redgrease

Fig. 2: Redis Gears Processing Pipeline Overview

1.2. What is Redis Gears? 3

redgrease

Readers can be parameterized to narrow down the subset of data it should operate on, for example by specifying a
pattern for the keys or streams it should read.

Depending on the reader type, Gear Functions can either be run immediately, on demand, as batch jobs or in an
event-driven manner by registering it to trigger automatically on various types of events.

Each shard of the Redis Cluster executes its own ‘instance’ of the Gear Function in parallel on the relevant local shard
data, unless explicit collected, or until it is implicitly reduced to its final global result at the end of the function.

You can find more details about the internals of Gear Functions in the official Documentation.

1.3 What is RedGrease?

The RedGrease package provides a number of functionalities that facilitates writing and executing Gear Functions:

1. Redis / Redis Gears client(s).

Extended versions of the redis Python client and redis-py-cluster Python client clients, but with ad-
ditional pythonic functions, mapping closely (1-to-1) to the Redis Gears command set (e.g. RG.
PYEXECUTE, RG.GETRESULTS, RG.TRIGGER, RG.DUMPREGISTRATIONS etc), outlined in
the official Gears documentation.

import redgrease

gear_script = ... # Gear function string, a GearFunction object or a
→˓script file path.

rg = redgrease.RedisGears()
rg.gears.pyexecute(gear_script) # <-- RG.PYEXECUTE

2. Runtime functions wrappers.

The RedisGears server runtime environment automatically loads a number of special functions into
the top level scope (e.g. GearsBuilder, execute(), log() etc). RedGrease provides place-
holder versions that provide docstrings, auto completion and type hints during development, and
does not clash with the actual runtime.

3. Server-side Redis commands.

Allowing for most Redis (v.6) commands to be executed in the server-side function, against the
local shard, as if using a Redis ‘client’ class, instead of explicitly invoking the corresponding com-
mand string using execute(). It is basically the redis Python client, but with redis.Redis.

4 Chapter 1. Introduction

https://oss.redislabs.com/redisgears/master/functions.html
https://pypi.org/project/redis/
https://github.com/Grokzen/redis-py-cluster
https://oss.redislabs.com/redisgears/commands.html
https://oss.redislabs.com/redisgears/runtime.html
https://pypi.org/project/redis/

redgrease

execute_command() rewired to use the Gears-native redgrease.runtime.execute()
instead under the hood.

import redgrease

This function runs **on** the Redis server.
def download_image(annotation):

img_id = annotation["image_id"]
img_key = f"image:{img_id}"
if redgrease.cmd.hexists(img_key, "image_data"): # <- hexists

image already downloaded
return img_key

redgrease.log(f"Downloadign image for annotation: {annotation}")
image_url = redgrease.cmd.hget(img_key, "url") # <- hget
response = requests.get(image_url)
redgrease.cmd.hset(img_key, "image_data", bytes(response.content)) #

→˓<- hset
return img_key

Redis connection (with Gears)
connection = redgrease.RedisGears()

Automatically download corresponding image, whenever an annotation is
→˓created.
image_keys = (

redgrease.KeysReader()
.values(type="hash", event="hset")
.foreach(download_image, requirements=["requests"])
.register("annotation:*", on=connection)

)

4. First class GearFunction objects.

Inspired by the “remote builders” of the official redisgears-py client, but with some differences, eg:

• Supports reuse of Open GearFunction, i.e. partial or incomplete Gear functions.

• Can be created without a Redis connection.

• Requirements can be specified per step, instead of only at execution.

• Can be executed in a few different convenient ways.

import redgrease

def schedule(record):
status = record.value.get("status", "new")
redgrease.log(f"Scheduling '{status}' record: {record.key}")
if status == "new":

record.value["status"] = "pending"
redgrease.cmd.hset(record.key, "status", "pending")
redgrease.cmd.xadd("to_be_processed", {"record": record.key})

...
return record

(continues on next page)

1.3. What is RedGrease? 5

https://github.com/RedisGears/redisgears-py

redgrease

(continued from previous page)

def process(item):
redgrease.log(f"processsing {item}")
success = len(item["record"]) % 3 # Mock processing
redgrease.cmd.hset(item["record"], "status", "success" if success

→˓else "failed")

def has_status(status):
return lambda record: record.value.get("status", None) == status

key_pattern = "record:*"

records = redgrease.KeysReader().records(type="hash")

record_listener = records.foreach(schedule).register(key_pattern,
→˓eventTypes=["hset"])

get_failed = records.filter(has_status("failed"))

count_by_status = (
records.countby(lambda r: r.value.get("status", "unknown"))
.map(lambda r: {r["key"]: r["value"]})
.aggregate({}, lambda a, r: dict(a, **r))
.run(key_pattern)

)

process_records = (
redgrease.StreamReader()
.values()
.foreach(process, requirements=["numpy"])
.register("to_be_processed")

)

server = redgrease.RedisGears()

Different ways of executing
server.gears.pyexecute(record_listener)
process_records.on(server)

failed = get_failed.run(key_pattern, on=server)
count = count_by_status.on(server)

5. A Command Line Tool.

Helps running and/or loading of Gears script files onto a RedisGears instance. Particularly useful for
“trigger-based” CommandReader Gears.

It also provides a simple form of ‘hot-reloading’ of RedisGears scripts, by continuously monitor-
ing directories containing Redis Gears scripts and automatically ‘pyexecute’ them on a Redis Gear
instance if it detects modifications.

The purpose is mainly to streamline development of ‘trigger-style’ Gear scripts by providing a form
of hot-reloading functionality.

redgrease --server 10.0.2.21 --watch scripts/

6 Chapter 1. Introduction

redgrease

6. A bunch of helper functions and methods for common boilerplate tasks.

• A redgrease.utils module full of utils such as parsers etc.

• Various Syntactic sugar and enum-like objects for common keywords etc.

• A Command Function Decorator, that makes creation and execution of redgrease.reader.
CommandReader GearFunction trivial, and providing a straight forward way of adding bespoke server-
side Redis commands.

• Reader-specific sugar operators, like KeysReader.values that automatically lifts out the values.

• And more. . .

1.4 Example Use-Cases

The possible use-cases for Redis Gears, and subsequently RedGrease, is virtually endless, but some common, or
otherwise interesting use-cases include:

• Automatic Cache-miss handling.

Make Redis automatically fetch and cache the requested resource, so that clients do not have to
handle cache-misses.

• Automatic batched write-through / write-behind.

Make Redis automatically write back updates to slower, high latency datastore, efficiently using batch
writes. Allowing clients to write high velocity updates uninterrupted to Redis, without bothering with
the slow data store.

Fig. 3: Write-Through / Write-Behind example

• Advanced Data Queries and Transforms.

Perform “Map-Reduce”-like queries on Redis datasets.

• Stream event processing.

Trigger processes automatically when data enters Redis.

• Custom commands.

Create custom Redis commands with arbitrarily sophisticated logic, enabling features to virtually any
platform with a Redis client implementation.

1.4. Example Use-Cases 7

redgrease

1.5 Glossary

Gear Function Gear Function, written as two separate words, refer to any valid Gear function, as defined in the Redis
Gears Documentation, regardless if it was constructed as a pure string, loaded from a file, or programmatically
built using RedGrease’s GearFunction constructors.

GearFunction GearFunction, written as one word, refers specifically to RedGrease objects of type redgrease.
GearFunction.

These are constructed programmatically using either redgrease.GearsBuilder, any of the Reader classes
such as redgrease.KeysReader, redgrease.StreamReader, redgrease.CommandReader
etc, or function decorators such as redgrease.trigger and so on.

It does not refer to Gear Functions that are loaded from strings, either explicitly or from files.

Courtesy of : Pte. Ltd.

8 Chapter 1. Introduction

https://oss.redislabs.com/redisgears/master/functions.html
https://oss.redislabs.com/redisgears/master/functions.html
https://www.lyngon.com

CHAPTER

TWO

QUICKSTART GUIDE

This section aims to get you started within a few couple of minutes, while still explaining what is going on, so that
someone with only limited experience with Python can follow along.

Setup TL;DR

POSIX (Linux, BSD, OSX, etc)

The Windows

docker run --name redis_gears --rm -d -p 127.0.0.1:6379:6379 redislabs/redisgears:1.0.
→˓6

virtualenv -p python3.7 .venv
source .venv/bin/activate

pip install redgrease[all]

docker run --name redis_gears --rm -d -p 127.0.0.1:6379:6379 redislabs/redisgears:1.0.
→˓6

virtualenv -p python3.7 .venv
\venv\Scripts\activate.bat

pip install redgrease[all]

Note: This is not tested. If anyone is using this OS, please let me know if this works or not. :)

If this was obvious to you, you can jump straight to the first code examples.

2.1 Running Redis Gears

The easiest way to run a Redis Engine with Redis Gears is by running one of the official Docker images, so firstly
make sure that you have Docker engine installed.

(Eh? I’ve been living under a rock. What the hedge is Docker?)

With Docker is installed, open a terminal or command prompt and enter:

docker run --name redis_gears --rm -d -p 127.0.0.1:6379:6379 redislabs/redisgears:1.0.
→˓6

9

https://docs.docker.com/engine/install/
https://docker-curriculum.com/

redgrease

This will run a single Redis engine, with the Redis Gears module loaded, inside a Docker container. The first time you
issue the command it may take a little time to launch, as Docker needs to fetch the container image from Docker Hub.

Lets break the command down:

• docker run is the base command telling Docker that we want to run a new containerized process.

• --name redis_gears gives the name “redis_gears” to the container for easier identification. You can
change it for whatever you like or omit it to assign a randomized name.

• --rm instructs Docker that we want the container to be removed, in case it stops. This is optional but makes
starting and stopping easer, although the state (and stored data) will be lost between restarts.

• -d instructs Docker to run the container in the background as a ‘daemon’. You can omit this too, but your
terminal / command prompt will be hijacked by the output / logs from the container. Which could be interesting
enough.

• -p 127.0.0.1:6379:6379 instructs Docker that we want your host computer to locally (127.0.0.1) expose
port 6379 and route it to 6379 in the container. This is the default port for Redis communication and this
argument is necessary for application on your computer to be able to talk to the Redis engine inside the Docker
container.

• redislabs/redisgears:1.0.6 is the name and version of the Docker image that we want to run. This
specific image is prepared by RedisLabs and has the Gears module pre-installed and configured.

Note: If its your first time trying Redis Gears, stick to the command above, but if you want to try running a cluster
image instead, you can issue the following command:

docker run --name redis_gears_cluster --rm -d -p 127.0.0.1:3001:30001 -p 127.0.0.
→˓1:3002:30002 -p 127.0.0.1:3003:30003 redislabs/rgcluster:1.0.6

This will run a 3-shard cluster exposed locally on ports 30001-30003.

Refer to the official documentation for more information and details on how how to install Redis Gears.

2.1.1 Checking Logs:

You can confirm that the container is running by inspecting the logs / output of the Redis Gears container by issuing
the command:

docker logs redis_gears

• You can optionally add the argument --follow to continuously follow the log output.

• You can optionally add the argument --tail 100 to start showing the logs from the 100 most recent entries
only.

If you just started the single instance engine, the logs should hold 40 odd lines starting and ending something like this:

1:C 03 Apr 2021 07:41:37.250 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
1:C 03 Apr 2021 07:41:37.251 # Redis version=6.0.1, bits=64, commit=00000000,
→˓modified=0, pid=1, just started
...
...
...
1:M 03 Apr 2021 07:41:37.309 * Module 'rg' loaded from /var/opt/redislabs/lib/modules/
→˓redisgears.so
1:M 03 Apr 2021 07:41:37.309 * Ready to accept connections

10 Chapter 2. Quickstart Guide

https://hub.docker.com/r/redislabs/redisgears
https://hub.docker.com/r/redislabs/rgcluster
https://hub.docker.com/r/redislabs/rgcluster
https://docs.redislabs.com/latest/modules/redisgears/installing-redisgears/

redgrease

2.1.2 Stopping

You can stop the container by issuing:

docker stop redis_gears

If successful, it should simply output the name of the stopped container: redis_gears

2.2 RedGrease Installation

For the client application environment, it is strongly recommended that you set up a virtual Python environment, with
Python 3.7 specifically.

Note: The Redis Gears containers above use Python 3.7 for executing Gear functions, and using the same version the
client application will enable more features.

Warning: The RedGrease client package works with any Python version from 3.6 and later, but execution of
dynamically created GearFunction objects is only possible when the client Python version match the Python
version on the Redis Gears server runtime.

If the versions mismatch, Gear function execution is limited to execution by string or execution of script files

With Python 3.7, and virtualenv installed on your system:

1. Create a virtual python3.7 environment

virtualenv -p python3.7 .venv

Python packages, including RedGrease that you install within this virtual environment will not inter-
fere with the rest of your system.

2. Activate the environment

POSIX (Linux, BSD, OSX, etc)

The Windows

source .venv/bin/activate

.venv\Scripts\activate.bat

3. Install redgrease

pip install redgrease[all]

Note: The [all] portion is important, as it will include all the Redgrease extras, and include the
dependencies for the RedisGears client module as well as the RedGrease Command Line Interface
(CLI).

See here for more details on the various extras options.

2.2. RedGrease Installation 11

https://www.python.org/downloads/release/python-379/
https://virtualenv.pypa.io

redgrease

2.3 Basic Commands

In this section we’ll walk through some of the basic commands and interactions with the RedGrease Gears client,
including executing some very basic Gear functions.

The next chapter “RedGrease Client”, goes into all commands in more details, but for now we’ll just look at the most
important things.

You can take a sneak-peek at the full code that we will walk through in this section, by expanding the block below
(click “ Show”).

If you find this rather self-explanatory, then you can probably jump directly to the next section where we do some
RedGrease Gear Function Comparisons with “vanilla” RedisGears functions.

Otherwise just continue reading and we’ll, go through it step-by-step.

Full code of this section.

Listing 1: From examples/basics.py on the official GitHub repo:

1 from operator import add
2

3 import redgrease
4

5 # Create connection / client for single instance Redis
6 r = redgrease.RedisGears()
7

8 # # Normal Redis Commands
9 # Clearing the database

10 r.flushall()
11

12 # String operations
13 r.set("Foo-fighter", 2021)
14 r.set("Bar-fighter", 63)
15 r.set("Baz-fighter", -747)
16

17 # Hash Opertaions
18 r.hset("noodle", mapping={"spam": "eggs", "meaning": 8})
19 r.hincrby("noodle", "meaning", 34)
20

21 # Stream operations
22 r.xadd("transactions:0", {"msg": "First", "from": 0, "to": 2, "amount": 1000})
23

24

25 # # Redis Gears Commands
26 # Get Statistics on the Redis Gears Python runtime
27 gears_runtime_python_stats = r.gears.pystats()
28 print(f"Gears Python runtime stats: {gears_runtime_python_stats}")
29

30 # Get info on any registered Gear functions, if any.
31 registered_gear_functions = r.gears.dumpregistrations()
32 print(f"Registered Gear functions: {registered_gear_functions}")
33

34 # Execute nothing as a Gear function
35 empty_function_result = r.gears.pyexecute()
36 print(f"Result of nothing: {empty_function_result}")
37

38 # Execute a Gear function string that just iterates through and returns the key-space.
39 all_records_gear = r.gears.pyexecute("GearsBuilder('KeysReader').run()")

(continues on next page)

12 Chapter 2. Quickstart Guide

https://github.com/lyngon/redgrease

redgrease

(continued from previous page)

40 print("All-records gear results: [")
41 for result in all_records_gear:
42 print(f" {result}")
43 print("]")
44

45 # Gear function string to count all the keys
46 key_count_gearfun_str = "GearsBuilder('KeysReader').count().run()"
47 key_count_result = r.gears.pyexecute(key_count_gearfun_str)
48 print(f"Total number of keys: {int(key_count_result)}")
49

50

51 # # GearFunctions
52 # GearFunction object to count all keys
53 key_count_gearfun = redgrease.KeysReader().count().run()
54 key_count_result = r.gears.pyexecute(key_count_gearfun)
55 print(f"Total number of keys: {key_count_result}")
56

57

58 # Simple Aggregation
59 add_gear = redgrease.KeysReader("*-fighter").values().map(int).aggregate(0, add)
60 simple_sum = add_gear.run(on=r)
61 print(f"Multiplication of '-fighter'-keys values: {simple_sum}")

Let’s look at some code examples of how to use RedGrease, warming up with the basics.

2.3.1 Instantiation

Naturally, the first thing is to import of the RedGrease package and instantiate Redis Gears client / connection object:

Listing 2: Package import and client / connection instantiation:

1 from operator import add
2

3 import redgrease
4

5 # Create connection / client for single instance Redis
6 r = redgrease.RedisGears()
7

This will attempt to connect to a Redis server using the default port (6379) on “localhost”, which, if you followed the
instructions above should be exactly what you set up and have running. There are of course arguments to set other
targets, but more on that later.

The imported add function from the operator module is not part of the RedgGrease package, but we will use it
later in one of the examples.

Note: If you created a Redis cluster above then you have to specify the initial master nodes you want to connect to:

1 import redgrease
2

3 r = redgrease.RedisGears(port=30001)

2.3. Basic Commands 13

redgrease

2.3.2 Redis Commands

The instantiated client / connection, r, accepts all the normal Redis commands, exactly as expected. The subsequent
lines populate the Redis instance it with some data.

Listing 3: Some normal Redis commands:

9 # Clearing the database
10 r.flushall()
11

12 # String operations
13 r.set("Foo-fighter", 2021)
14 r.set("Bar-fighter", 63)
15 r.set("Baz-fighter", -747)
16

17 # Hash Opertaions
18 r.hset("noodle", mapping={"spam": "eggs", "meaning": 8})
19 r.hincrby("noodle", "meaning", 34)
20

21 # Stream operations
22 r.xadd("transactions:0", {"msg": "First", "from": 0, "to": 2, "amount": 1000})
23

24

2.3.3 Gears Commands

The client / connection also has a gears attribute that gives access to RedisGears Commands.

Listing 4: Some Redis Gears commands:

26 # Get Statistics on the Redis Gears Python runtime
27 gears_runtime_python_stats = r.gears.pystats()
28 print(f"Gears Python runtime stats: {gears_runtime_python_stats}")
29

30 # Get info on any registered Gear functions, if any.
31 registered_gear_functions = r.gears.dumpregistrations()
32 print(f"Registered Gear functions: {registered_gear_functions}")
33

34 # Execute nothing as a Gear function
35 empty_function_result = r.gears.pyexecute()
36 print(f"Result of nothing: {empty_function_result}")
37

38 # Execute a Gear function string that just iterates through and returns the key-space.
39 all_records_gear = r.gears.pyexecute("GearsBuilder('KeysReader').run()")
40 print("All-records gear results: [")
41 for result in all_records_gear:
42 print(f" {result}")
43 print("]")
44

45 # Gear function string to count all the keys
46 key_count_gearfun_str = "GearsBuilder('KeysReader').count().run()"
47 key_count_result = r.gears.pyexecute(key_count_gearfun_str)
48 print(f"Total number of keys: {int(key_count_result)}")
49

50

The highlighted lines show the commands Gears.pystats(), Gears.dumpregistrations() and Gears.

14 Chapter 2. Quickstart Guide

redgrease

pyexecute() respectively and the output should look something like this:

Gears Python runtime stats: PyStats(TotalAllocated=41275404, PeakAllocated=11867779,
→˓CurrAllocated=11786368)
Registered Gear functions: []
Result of nothing: True
All-records gear results: [

b"{'event': None, 'key': 'Baz-fighter', 'type': 'string', 'value': '-747'}"
b"{'event': None, 'key': 'Bar-fighter', 'type': 'string', 'value': '63'}"
b"{'event': None, 'key': 'transactions:0', 'type': 'unknown', 'value': None}"
b"{'event': None, 'key': 'Foo-fighter', 'type': 'string', 'value': '2021'}"
b"{'event': None, 'key': 'noodle', 'type': 'hash', 'value': {'meaning': '42',

→˓'spam': 'eggs'}}"
]
Total number of keys: 5

The command Gears.pystats() gets some memory usage statistics about the Redis Gears Python runtime envi-
ronment on the server.

The command Gears.dumpregistrations() gets information about any registered Gears functions, in this cas
none.

And finally, the command Gears.pyexecute() is the most important command, which sends a Gears function to
the server for execution or registration. In the above example, we are invoking it three times:

• Firstly (line 35) - We pass nothing, i.e. no function at all, which naturally doesn’t do anything, but is perfectly
valid, and the call thus just returns True.

• Secondly (line 39) - We execute a Raw Function String, that reads through the Redis keys (indicated by the
'KeysReader') and just returns the result by running the function as a batch job (indicated by the run()
operation). The result is consequently a list of dicts, representing the keys and their respective values and types
in the Redis keyspace, I.e. the keys we added just before.

• Thirdly (lines 46-47) - We pass a very similar function, but with an additional count() operation, which is a
Gear operation that simply aggregates and counts the incoming records, in this case all key-space records on the
server. The result is simply the number or keys in the database: 5.

There are other Gears commands too, and the next chapter, “Redgrease Client”, will run through all of them.

2.3.4 GearFunctions

Composing Gear functions by using strings is not at all very practical, so RedGrease provides a more convenient way
of constructing Gear functions programmatically, using various GearFunction objects.

Listing 5: GearFunction objects instead of strings:

52 # GearFunction object to count all keys
53 key_count_gearfun = redgrease.KeysReader().count().run()
54 key_count_result = r.gears.pyexecute(key_count_gearfun)
55 print(f"Total number of keys: {key_count_result}")
56

57

This Gear function does the same thing as the last function of the previous example, but instead of being composed by a
string, it is composed programmatically using RedGrease’s GearFunction objects, in this case using the KeysReader
class.

The output is, just as expected:

2.3. Basic Commands 15

redgrease

Total number of keys: 5

Warning: Note that execution of GearFunction objects only work if your local Python environment version
matches the version on the Redis Gear server, i.e. Python 3.7.

If the versions mismatch, Gear function execution is limited to execution by string or execution of script files

The final basic example shows a GearFunction that has a couple of operations stringed together.

Listing 6: Simple aggregation - Add keyspace values:

59 add_gear = redgrease.KeysReader("*-fighter").values().map(int).aggregate(0, add)
60 simple_sum = add_gear.run(on=r)
61 print(f"Multiplication of '-fighter'-keys values: {simple_sum}")

This Gear function adds the values of all the simple keys, with names ending in “-fighter”, which were the first three
keys created in the example.

And indeed, the result is:

Sum of '-fighter'-keys values: 1337

Here is a quick run down of how it works:

• Firstly, the KeysReader is parameterized with a key pattern *-fighter meaning it will only read the
matching keys.

• Secondly, the map() operation uses a simple lambda function, to lift out the value and ensure it is an integer,
on each of the keys.

• Thirdly, the aggregate() operation is used to add the values together, using the imported add function,
starting from the value 0.

• Lastly, the run() operation is used to specify that the function should run as a batch job. The on argument
states that we want to run it immediately on our client / connection, r.

The chapter “Readers” will go through the various types of readers, and the chapter operations will go through the
various types of operations, and how to use them.

2.4 RedGrease Gear Function Comparisons

Now let’s move on to some more examples of smaller Gear functions, before we move on to some more elaborate
examples.

The examples in this section are basically comparisons of how the examples in the official Gears documentation, could
be simplified by using RedGrease.

Note: RedGrease is backwards compatible with the “vanilla” syntax and structure, and all versions below are still
perfectly valid Gear functions when executing using RedGrease.

16 Chapter 2. Quickstart Guide

https://realpython.com/python-lambda/
https://oss.redislabs.com/redisgears/master/examples.html

redgrease

2.4.1 Word Count

Counting of words.

Assumptions

All keys store Redis String values. Each value is a sentence.

Vanilla Version

This is the the ‘Word Count’ example from the official RedisGears documentation.

Listing 7: Vanilla - Word Count

gb = GearsBuilder()
gb.map(lambda x: x["value"]) # map records to "sentence" values
gb.flatmap(lambda x: x.split()) # split sentences to words
gb.countby() # count each word's occurances
gb.run()

RedGrease Version

This is an example of how the same Gear function could be rewritten using RedGrease.

Listing 8: RedGrease - Word Count

from redgrease import KeysReader

KeysReader().values().flatmap(str.split).countby().run()

2.4.2 Delete by Key Prefix

Deletes all keys whose name begins with a specified prefix and return their count.

Assumptions

There may be keys in the database. Some of these may have names beginning with the “delete_me:” prefix.

Vanilla Version

This is the the ‘Delete by Key Prefix’ example from the official RedisGears documentation.

Listing 9: Vanilla - Delete by Key Prefix

gb = GearsBuilder()
gb.map(lambda x: x["key"]) # map the records to key names
gb.foreach(lambda x: execute("DEL", x)) # delete each key
gb.count() # count the records
gb.run("delete_me:*")

2.4. RedGrease Gear Function Comparisons 17

https://oss.redislabs.com/redisgears/master/examples.html#word-count
https://oss.redislabs.com/redisgears/master/examples.html#delete-by-key-prefix

redgrease

RedGrease Version

This is an example of how the same Gear function could be rewritten using RedGrease.

Listing 10: RedGrease - Delete by Key Prefix

from redgrease import KeysReader, cmd

delete_fun = KeysReader().keys().foreach(cmd.delete).count()
delete_fun.run("delete_me:*")

2.4.3 Basic Redis Stream Processing

Copy every new message from a Redis Stream to a Redis Hash key.

Assumptions

An input Redis Stream is stored under the “mystream” key.

Vanilla Version

This is the the ‘Basic Redis Stream Processing’ example from the official RedisGears documentation.

Listing 11: Vanilla - Basic Redis Stream Processing

gb = GearsBuilder("StreamReader")
gb.foreach(

lambda x: execute("HMSET", x["id"], *sum([[k, v] for k, v in x.items()], []))
) # write to Redis Hash
gb.register("mystream")

RedGrease Version

This is an example of how the same Gear function could be rewritten using RedGrease.

18 Chapter 2. Quickstart Guide

https://oss.redislabs.com/redisgears/master/examples.html#basic-redis-stream-processing

redgrease

Listing 12: RedGrease - Basic Redis Stream Processing

from redgrease import StreamReader, cmd

StreamReader().foreach(lambda x: cmd.hmset(x["id"], x)).register(# write to Redis
→˓Hash

"mystream"
)

2.4.4 Automatic Expiry

Sets the time to live (TTL) for every updated key to one hour.

Assumptions

None.

Vanilla Version

This is the the ‘Automatic Expiry’ example from the official RedisGears documentation.

Listing 13: Vanilla - Automatic Expiry

gb = GB()
gb.foreach(lambda x: execute("EXPIRE", x["key"], 3600))
gb.register("*", mode="sync", readValue=False)

RedGrease Version

This is an example of how the same Gear function could be rewritten using RedGrease.

Listing 14: RedGrease - Automatic Expiry

from redgrease import KeysReader, cmd

expire = KeysReader().keys().foreach(lambda x: cmd.expire(x, 3600))
expire.register("*", mode="sync", readValue=False)

2.4.5 Keyspace Notification Processing

This example demonstrates a two-step process that:

1. Synchronously captures distributed keyspace events

2. Asynchronously processes the events’ stream

2.4. RedGrease Gear Function Comparisons 19

https://oss.redislabs.com/redisgears/master/examples.html#automatic-expiry

redgrease

Assumptions

The example assumes there is a process function defined, that does the actual processing of the deleted records.
For the purpose of the example we can assume that it just outputs the name of the expired keys to the Redis logs, as
follows:

def process(x):
"""
Processes a message from the local expiration stream
Note: in this example we simply print to the log, but feel free to replace
this logic with your own, e.g. an HTTP request to a REST API or a call to an
external data store.
"""
log(f"Key '{x['value']['key']}' expired at {x['id'].split('-')[0]}")

Vanilla Version

This is the the ‘Keyspace Notification Processing’ example from the official RedisGears documentation.

Listing 15: Vanilla - Keyspace Notification Processing

Capture an expiration event and adds it to the shard's local 'expired' stream
cap = GB("KeysReader")
cap.foreach(lambda x: execute("XADD", f"expired:{hashtag()}", "*", "key", x["key"]))
cap.register(prefix="*", mode="sync", eventTypes=["expired"], readValue=False)

Consume new messages from expiration streams and process them somehow
proc = GB("StreamReader")
proc.foreach(process)
proc.register(prefix="expired:*", batch=100, duration=1)

RedGrease Version

This is an example of how the same Gear function could be rewritten using RedGrease.

20 Chapter 2. Quickstart Guide

https://oss.redislabs.com/redisgears/master/examples.html#keyspace-notification-processing

redgrease

Listing 16: RedGrease - Keyspace Notification Processing

from redgrease import KeysReader, StreamReader, cmd, hashtag, log

Capture an expiration event and adds it to the shard's local 'expired' stream
KeysReader().keys().foreach(

lambda key: cmd.xadd(f"expired:{hashtag()}", {"key": key})
).register(prefix="*", mode="sync", eventTypes=["expired"], readValue=False)

Consume new messages from expiration streams and process them somehow
StreamReader().foreach(process).register(prefix="expired:*", batch=100, duration=1)

2.4.6 Reliable Keyspace Notification

Capture each keyspace event and store to a Stream.

Assumptions

. . .

Vanilla Version

This is the the ‘Reliable Keyspace Notification’ example from the official RedisGears documentation.

Listing 17: Vanilla - Reliable Keyspace Notification

GearsBuilder().foreach(
lambda x: execute(

"XADD", "notifications-stream", "*", *sum([[k, v] for k, v in x.items()], [])
)

).register(prefix="person:*", eventTypes=["hset", "hmset"], mode="sync")

RedGrease Version

This is an example of how the same Gear function could be rewritten using RedGrease.

2.4. RedGrease Gear Function Comparisons 21

https://oss.redislabs.com/redisgears/master/examples.html#reliable-keyspace-notification

redgrease

Listing 18: RedGrease - Reliable Keyspace Notification

from redgrease import KeysReader, cmd

KeysReader().foreach(lambda x: cmd.xadd("notifications-stream", x)).register(
prefix="person:*", eventTypes=["hset", "hmset"], mode="sync"

)

2.5 Cache Get Command

As a final example of this quickstart tutorial, let’s look at how we can build caching into Redis as a new command,
with the help of Redis Gears and RedGrease.

Full code.

It may look a bit intimidating at first, but theres actually not not that much to it. Most of it is just comments, logging
or testing code.

Listing 19: Simple Caching command:

import timeit

import redgrease

Bind / register the function on some Redis instance.
r = redgrease.RedisGears()

CommandReader Decorator
The `command` decorator tunrs the function to a CommandReader,
registerered on the Redis Gears sever if using the `on` argument
@redgrease.command(on=r, requirements=["requests"], replace=False)
def cache_get(url):

import requests

Check if the url is already in the cache,
And if so, simply return the cached result.
if redgrease.cmd.exists(url):

return bytes(redgrease.cmd.get(url))

Otherwise fetch the url.
response = requests.get(url)

Return nothing if request fails
if response.status_code != 200:

return bytes()

If ok, set the cache data and return.
response_data = bytes(response.content)
redgrease.cmd.set(url, response_data)

return response_data

Test caching on some images

(continues on next page)

22 Chapter 2. Quickstart Guide

redgrease

(continued from previous page)

some_image_urls = [
"http://images.cocodataset.org/train2017/000000483381.jpg",
"http://images.cocodataset.org/train2017/000000237137.jpg",
"http://images.cocodataset.org/train2017/000000017267.jpg",
"http://images.cocodataset.org/train2017/000000197756.jpg",
"http://images.cocodataset.org/train2017/000000193332.jpg",
"http://images.cocodataset.org/train2017/000000475564.jpg",
"http://images.cocodataset.org/train2017/000000247368.jpg",
"http://images.cocodataset.org/train2017/000000416337.jpg",

]

Get all the images and write them to disk
def get_em_all():

for image_url in some_image_urls:

This will invoke the cache_get function **on the Redis server**
image_data = cache_get(image_url)

Quick and dirty way of getting the image file name.
image_name = image_url.split("/")[-1]

Write to file
with open(image_name, "wb") as img_file:

img_file.write(image_data.value)

Test it
Time how long it takes to get images when the cache is empty.
t1 = timeit.timeit(get_em_all, number=1)
print(f"Cache-miss time: {t1:.3f} seconds")

Time how long it takes to get the images when they are all in the cache.
t2 = timeit.timeit(get_em_all, number=1)
print(f"Cache-hit time: {t2:.3f} seconds")
print(f"That is {t1/t2:.1f} times faster!")

Clean the database
def cleanup(r: redgrease.RedisGears):

Unregister all registrations
for reg in r.gears.dumpregistrations():

r.gears.unregister(reg.id)

Remove all executions
for exe in r.gears.dumpexecutions():

r.gears.dropexecution(str(exe.executionId))

Clear all keys
r.flushall()

Check that there are no keys
return len(r.keys()) == 0

(continues on next page)

2.5. Cache Get Command 23

redgrease

(continued from previous page)

print(cleanup(r))

Let’s go through the code, step by step, and it will hopefully make some sense.

Listing 20: Instantiation as usual:

1 import timeit
2

3 import redgrease
4

5 # Bind / register the function on some Redis instance.
6 r = redgrease.RedisGears()
7

8

The instantiation of the client / connection is business as usual.

2.5.1 Cache-Get function

Lets now go for the core of the solution; The code that we want to run on Redis for each resource request.

Listing 21: Cache handling function:

14 import requests
15

16 # Check if the url is already in the cache,
17 # And if so, simply return the cached result.
18 if redgrease.cmd.exists(url):
19 return bytes(redgrease.cmd.get(url))
20

21 # Otherwise fetch the url.
22 response = requests.get(url)
23

24 # Return nothing if request fails
25 if response.status_code != 200:
26 return bytes()
27

28 # If ok, set the cache data and return.
29 response_data = bytes(response.content)
30 redgrease.cmd.set(url, response_data)
31

32 return response_data
33

34

Look at the highlighted lines, and notice:

• The logic of handling requests with caching is simply put in a normal function, much like we would if the
caching logic was handled by each client.

• The argument of the function is what we could expect, the url to the resource to get.

• The function return value is either:

– The contents of the response to requests to the URL (line 32), or

24 Chapter 2. Quickstart Guide

redgrease

– A cached value (line 19)

Which is exactly what you would expect from a cached fetching function.

The really interesting part, however, is this little line, on top of the function.

Listing 22: CommandReader function decorator:

10 # The `command` decorator tunrs the function to a CommandReader,
11 # registerered on the Redis Gears sever if using the `on` argument
12 @redgrease.command(on=r, requirements=["requests"], replace=False)
13 def cache_get(url):
14 import requests
15

16 # Check if the url is already in the cache,
17 # And if so, simply return the cached result.
18 if redgrease.cmd.exists(url):
19 return bytes(redgrease.cmd.get(url))

All the Redis Gears magic is hidden in this function decorator, and it does a couple of important things:

• It embeds the function in a CommandReader Gear function.

• It ensures that the function is registered on our Redis server(s).

• It captures the relevant requirements, for the function to work.

• It ensures that we only register this function once.

• It creates a new function, with the same name, which when called, triggers the corresponding registered Gear
function, and returns the result from the server.

This means that you can now call the decorated function, just as if it was a local function:

result = cache_get("http://images.cocodataset.org/train2017/000000169188.jpg")

This may look like it is actually executing the function locally, but the cache_get function is actually executed on
the server.

This means that the registered cache_get Gear function can not only be triggered by the client that defined the
decorated function, but can be triggered by any client by invoking the Redis Gear RG.TRIGGER command with the
the functions’ trigger name and arguments.

In our case, using redis-cli as an example:

> RG.TRIGGER cache_get http://images.cocodataset.org/train2017/000000169188.jpg

The arguments for the @command decorator, are the same as to the OpenGearFunction.register() method,
inherited by the CommandReader class.

Note: This simplistic cache function is only for demonstrating the command function decorator. The design choices
of this particular caching implementation is far from ideal for all use-cases.

For example:

• Only the response content data is returned, not response status or headers.

• Cache is never expiring.

• If multiple requests for the same resource is made in close successions, there may be duplicate external requests.

• The entire response contents is copied into memory before writing to cache.

2.5. Cache Get Command 25

https://oss.redislabs.com/redisgears/commands.html#rgtrigger

redgrease

• . . . etc . . .

Naturally, the solution could easily be modified to accommodate other behaviors.

2.5.2 Testing the Cache

To test the caching, we create a very simple function that iterates through some URLs and tries to get them from the
cache and saving the contents to local files.

Listing 23: Test function:

36 some_image_urls = [
37 "http://images.cocodataset.org/train2017/000000483381.jpg",
38 "http://images.cocodataset.org/train2017/000000237137.jpg",
39 "http://images.cocodataset.org/train2017/000000017267.jpg",
40 "http://images.cocodataset.org/train2017/000000197756.jpg",
41 "http://images.cocodataset.org/train2017/000000193332.jpg",
42 "http://images.cocodataset.org/train2017/000000475564.jpg",
43 "http://images.cocodataset.org/train2017/000000247368.jpg",
44 "http://images.cocodataset.org/train2017/000000416337.jpg",
45]
46

47

48 # Get all the images and write them to disk
49 def get_em_all():
50

51 for image_url in some_image_urls:
52

53 # This will invoke the cache_get function **on the Redis server**
54 image_data = cache_get(image_url)
55

56 # Quick and dirty way of getting the image file name.
57 image_name = image_url.split("/")[-1]
58

59 # Write to file
60 with open(image_name, "wb") as img_file:
61 img_file.write(image_data.value)
62

63

64 # Test it
65 # Time how long it takes to get images when the cache is empty.
66 t1 = timeit.timeit(get_em_all, number=1)
67 print(f"Cache-miss time: {t1:.3f} seconds")
68

69 # Time how long it takes to get the images when they are all in the cache.
70 t2 = timeit.timeit(get_em_all, number=1)
71 print(f"Cache-hit time: {t2:.3f} seconds")
72 print(f"That is {t1/t2:.1f} times faster!")
73

74

Calling the this function twice reveals that the caching does indeed seem to work.

Cache-miss time: 10.954 seconds
Cache-hit time: 0.013 seconds
That is 818.6 times faster!

26 Chapter 2. Quickstart Guide

redgrease

We can also inspect the logs of the Redis node to confirm that the cache function was indeed executed on the server.

docker logs --tail 100

And you should indeed see that the expected log messages appear:

1:M 06 Apr 2021 08:58:06.314 * <module> GEARS: Cache request #1 for resource 'http://
→˓images.cocodataset.org/train2017/000000416337.jpg'
1:M 06 Apr 2021 08:58:06.314 * <module> GEARS: Cache miss #1 - Downloading resource
→˓'http://images.cocodataset.org/train2017/000000416337.jpg'.
1:M 06 Apr 2021 08:58:07.855 * <module> GEARS: Cache update #1 - Request status for
→˓resource 'http://images.cocodataset.org/train2017/000000416337.jpg': 200

...

1:M 06 Apr 2021 08:58:07.860 * <module> GEARS: Cache request #2 for resource 'http://
→˓images.cocodataset.org/train2017/000000416337.jpg'

The last piece of code is jut to clean up the database by un-registering the cache_get Gear function, cancel and
drop any ongoing Gear function executions and flush the key-space.

Listing 24: Clean up the database:

76 def cleanup(r: redgrease.RedisGears):
77

78 # Unregister all registrations
79 for reg in r.gears.dumpregistrations():
80 r.gears.unregister(reg.id)
81

82 # Remove all executions
83 for exe in r.gears.dumpexecutions():
84 r.gears.dropexecution(str(exe.executionId))
85

86 # Clear all keys
87 r.flushall()
88

89 # Check that there are no keys
90 return len(r.keys()) == 0
91

92

93 # print(cleanup(r))

That wraps up the Quickstart Guide! Good luck building Gears!

Courtesy of : Pte. Ltd.

2.5. Cache Get Command 27

https://www.lyngon.com

redgrease

28 Chapter 2. Quickstart Guide

CHAPTER

THREE

REDGREASE CLIENT

The RedGrease client / connection object gives access to the various commands defined by the RedisGears module.

3.1 Instantiation

The RedGrease client can be instantiated in a few different ways.

3.1.1 As a Redis Client

This instantiation method is useful if you are working with Redis from scratch and are not working on a legacy
application that already has a bunch of Redis objects instantiated.

import redgrease

r = redgrease.RedisGears(host="localhost", port=6379)

This instantiates a Redis client object that is a subclass of the Redis class of the popular redis python client, but with
an additional property gears through which the RedisGears commands can be accessed.

The constructor takes all the same arguments as the normal Redis client, and naturally it exposes all the same Redis
command methods as the original.

It also means that if you are running a Redis instance on the default Redis port (6379) locally, as above, then you don’t
need any arguments to instantiate the client object: r = redgrease.RedisGears().

Note: RedGrease also supports cluster-mode. Instantiating RedisGears will automatically try to figure out if it
is against a cluster, and in that case instead instantiate an object which is a subclass of RedisCluster from the
redis-py-cluster package (which in turn also is a subclass of Redis from the redis package).

The constructor takes all the same arguments as the normal Redis client, and naturally it exposes all the same Redis
command methods as well.

If you want to be explicit which class to instantiate, then you can use redgrease.Redis and redgrease.
RedisCluster for single and cluster mode respectively.

29

https://github.com/andymccurdy/redis-py
https://github.com/Grokzen/redis-py-cluster
https://github.com/andymccurdy/redis-py

redgrease

3.1.2 As a Gears object

If you already have code with instantiated Redis client objects, and you don’t want to create more connections, then
you can instantiate only the redgrease.Gears object directly, using your existing Redis connection.

import redis # Alt. `rediscluster`
import redgrease

Legacy code
r = redis.Redis() # Alt. `rediscluster.RedisCluster()`
...

New code
gears = redgrease.Gears(r)

This instantiates a Gears object, which only exposes the RedisGears commands can be accessed, and not the normal
Redis commands. This object is the same object that the above RedisGears client exposes through its gears property.

3.2 RedisGears Commands

The commands introduced by the RedisGears Redis module can be invoked through the Gears object, instantiates
as per above. This section gives a run-down of the various commands and what they do, in the order of usefulness to
most people.

You can find all the methods and functions in the API Reference, and in this section, we specifically look at the
redgrease.Gears class.

Command Descriptions:

• Executing Gear Functions

• Get List of Executions

• Get Result of Asynchronous Execution

• Get List of Registered Event-Based Functions

• Un-register an Event-Based Function

• Trigger a ‘Command-Event’

• Abort a Running Execution

• Remove an Execution

• Get List of Registered Dependencies

• Get Python Runtime Statistics

• Get Cluster Information

• Refresh Cluster Topology

• Get a Detailed Execution Plan

• Get and Set Gears Configurations

30 Chapter 3. RedGrease Client

redgrease

3.2.1 Executing Gear Functions

redgrease.Gears.pyexecute()

This is the most important RedGrease command, as it is the command for executing Gear functions. There are other
ways, as we will go through in the next section Executing Gear Functions, but under the hood they all call this method.

RedisGears Command: RG.PYEXECUTE

Gears.pyexecute(gear_function: Union[str, redgrease.runtime.GearsBuilder, red-
grease.gears.GearFunction] = '', unblocking=False, requirements: Op-
tional[Iterable[Union[str, packaging.requirements.Requirement]]] = None, en-
force_redgrease: Optional[Union[bool, str, packaging.version.Version, packag-
ing.requirements.Requirement]] = None)→ redgrease.data.ExecutionResult

Execute a gear function.

Parameters

• gear_function (Union[str, redgrease.gears.GearFunction],
optional) – Function to execute. Either:

– A raw function string containing a clear-text serialized Gears Python function as per the
examples in the official documentation.

– A script file path.

– A GearFunction object, e.g. GearsBuilder or either of the Readers types.

Note:

– Python version must match the Gear runtime.

– If the function is not “closed” with a run or register operation, an run() operation
without additional arguments will be assumed, and automatically added to the function to
close it.

– The default for enforce_redgrease is True.

Defaults to "", i.e. no function.

• unblocking (bool, optional) – Execute function without waiting for it to finish
before returning.

Defaults to False. I.e. block until the function returns or fails.

• requirements (Iterable[Union[None, str, redgrease.
requirements.Requirement]], optional) – List of 3rd party package
requirements needed to execute the function on the server.

Defaults to None.

• enforce_redgrease (redgrease.requirements.PackageOption,
optional) – Indicates if redgrease runtime package requirement should be added
or not, and potentially which version and/or extras or source.

It can take several optional types:

– None : No enforcement. Requirements are passed through, with or without ‘redgrease’
runtime package.

– True : Enforces latest "redgrease[runtime]" package on PyPi,

3.2. RedisGears Commands 31

https://oss.redislabs.com/redisgears/1.0/commands.html#rgpyexecute
https://oss.redislabs.com/redisgears/intro.html#the-simplest-example

redgrease

– False : Enforces that redgrease is not in the requirements list, any redgrease require-
ments will be removed from the function’s requirements. Note that it will not force
redgrease to be uninstalled from the server runtime.

– Otherwise, the argument’s string-representation is evaluated, and interpreted as either:

a. A specific version. E.g. "1.2.3".

b. A version qualifier. E.g. ">=1.0.0".

c. Extras. E.g. "all" or "runtime". Will enforce the latest version on PyPi, with
this/these extras.

d. Full requirement qualifier or source. E.g: "redgrease[all]>=1.2.3"
or "redgrease[runtime]@git+https://github.com/lyngon/
redgrease.git@main"

Defaults to None when gear_function is a script file path or a raw function string, but
True when it is a GearFunction object.

Returns

The returned ExecutionResult has two properties: value and errors, containing the
result value and any potential errors, respectively.

The value contains the result of the function, unless:

• When used in ‘unblocking’ mode, the value is set to the execution ID

• If the function has no output (i.e. it is closed by register() or for some other reason is not
closed by a run() action), the value is True (boolean).

Any errors generated by the function are accumulated in the errors property, as a list.

Note: The ExecutionResult object itself behaves for the most part like its contained
value, so for many simple operations, such as checking True-ness, result length, iterate results
etc, it can be used directly. But the the safest was to get the actual result is by means of the
value property.

Return type redgrease.data.ExecutionResult

Raises redis.exceptions.ResponseError – If the function cannot be parsed.

3.2.2 Get List of Executions

redgrease.Gears.dumpexecutions()

RedisGears Command: RG.DUMPEXECUTIONS

Gears.dumpexecutions(status: Optional[Union[str, redgrease.data.ExecutionStatus]] = None, regis-
tered: Optional[bool] = None)→ List[redgrease.data.ExecutionInfo]

Get list of function executions. The executions list’s length is capped by the ‘MaxExecutions’ configuration
option.

Parameters

• status (Union[str, redgrease.data.ExecutionStatus], optional) –
Only return executions that match this status. Either: “created”, “running”,
“done”, “aborted”, “pending_cluster”, “pending_run”, “pending_receive” or “pend-
ing_termination”. Defaults to None.

32 Chapter 3. RedGrease Client

https://oss.redislabs.com/redisgears/1.0/commands.html#rgdumpexecutions

redgrease

• registered (bool, optional) – If True, only return registered executions. If False,
only return non-registered executions.

Defaults to None.

Returns A list of ExecutionInfo, with an entry per execution.

Return type List[redgrease.data.ExecutionInfo]

3.2.3 Get Result of Asynchronous Execution

redgrease.Gears.getresults()

RedisGears Command: RG.GETRESULTS

Gears.getresults(id: Union[bytes, str, redgrease.data.ExecID, redgrease.data.ExecutionInfo]) → red-
grease.data.ExecutionResult

Get the results of a function in the execution list.

Parameters id (Union[redgrease.data.ExecutionInfo, redgrease.data.
ExecID, bytes, str]) – Execution identifier for the function to fetch the output
for.

Returns Results and errors from the gears function, if, and only if, execution exists and is completed.

Return type redgrease.data.ExecutionResult

Raises redis.exceptions.ResponseError – If the the execution does not exist or is still
running

3.2.4 Get List of Registered Event-Based Functions

redgrease.Gears.dumpregistrations()

RedisGears Command: RG.DUMPREGISTRATIONS

Gears.dumpregistrations(reader: Optional[str] = None, desc: Optional[str] = None, mode: Op-
tional[str] = None, key: Optional[str] = None, stream: Optional[str] =
None, trigger: Optional[str] = None)→ List[redgrease.data.Registration]

Get list of function registrations.

Parameters

• reader (str, optional) – Only return registrations of this reader type. E.g: “Stream-
Reader” Defaults to None.

• desc (str, optional) – Only return registrations, where the description match this
pattern. E.g: “transaction*log*” Defaults to None.

• mode (str, optional) – Only return registrations, in this mode. Either “async”,
“async_local” or “sync”. Defaults to None.

• key (str, optional) – Only return (KeysReader) registrations, where the key pattern
match this key. Defaults to None.

• stream (str, optional) – Only return (StreamReader) registrations, where the
stream pattern match this key. Defaults to None.

• trigger (str, optional) – Only return (CommandReader) registrations, where the
trigger pattern match this key. Defaults to None.

Returns A list of Registration, with one entry per registered function.

3.2. RedisGears Commands 33

https://oss.redislabs.com/redisgears/1.0/commands.html#rggetresults
https://oss.redislabs.com/redisgears/1.0/commands.html#rgdumpregistrations

redgrease

Return type List[redgrease.data.Registration]

3.2.5 Un-register an Event-Based Function

redgrease.Gears.unregister()

RedisGears Command: RG.UNREGISTER

Gears.unregister(id: Union[bytes, str, redgrease.data.ExecID, redgrease.data.Registration])→ bool
Removes the registration of a function

Parameters id (Union[redgrease.data.Registration, redgrease.data.
ExecID, bytes, str]) – Execution identifier for the function to unregister.

Returns True if successful

Return type bool

Raises redis.exceptions.ResponseError – If the registration ID doesn’t exist or if the
function’s reader doesn’t support the unregister operation.

3.2.6 Trigger a ‘Command-Event’

redgrease.Gears.trigger()

RedisGears Command: RG.TRIGGER

Gears.trigger(trigger_name: str, *args)→ List[Any]
Trigger the execution of a registered ‘CommandReader’ function.

Parameters

• trigger_name (str) – The registered ‘trigger’ name of the function

• *args (Any) – Any additional arguments to the trigger

Returns:6 List: A list of the functions output records.

3.2.7 Abort a Running Execution

redgrease.Gears.abortexecution()

RedisGears Command: RG.ABORTEXECUTION

Gears.abortexecution(id: Union[bytes, str, redgrease.data.ExecID, redgrease.data.ExecutionInfo])→
bool

Abort the execution of a function mid-flight

Parameters id (Union[redgrease.data.ExecutionInfo, redgrease.data.
ExecID, bytes, str]) – The execution id to abort

Returns True or an error if the execution does not exist or had already finished.

Return type bool

34 Chapter 3. RedGrease Client

https://oss.redislabs.com/redisgears/1.0/commands.html#rgunregister
https://oss.redislabs.com/redisgears/1.0/commands.html#rgtrigger
https://oss.redislabs.com/redisgears/1.0/commands.html#rgabortexecution

redgrease

3.2.8 Remove an Execution

redgrease.Gears.dropexecution()

RedisGears Command: RG.DROPEXECUTION

Gears.dropexecution(id: Union[bytes, str, redgrease.data.ExecID, redgrease.data.ExecutionInfo]) →
bool

Remove the execution of a function from the executions list.

Parameters id (Union[redgrease.data.ExecutionInfo, redgrease.data.
ExecID, bytes, str]) – Execution ID to remove

Returns True if successful, or an error if the execution does not exist or is still running.

Return type bool

3.2.9 Get List of Registered Dependencies

redgrease.Gears.pydumpreqs()

RedisGears Command: RG.PYDUMPREQS

Gears.pydumpreqs(name: Optional[str] = None, is_downloaded: Optional[bool] = None, is_installed:
Optional[bool] = None)→ List[redgrease.data.PyRequirementInfo]

Gets all the python requirements available (with information about each requirement).

Parameters

• name (str, optional) – Only return packages with this base name. I.e. it is not
filtering on version number, extras etc. Defaults to None.

• is_downloaded (bool, optional) – If True, only return requirements that have
been downloaded. If False, only return requirements that have NOT been downloaded.
Defaults to None.

• is_installed (bool, optional) – If True, only return requirements that have been
installed. If False, only return requirements that have NOT been installed. Defaults to None.

Returns List of Python requirement information objects.

Return type List[redgrease.data.PyRequirementInfo]

3.2.10 Get Python Runtime Statistics

redgrease.Gears.pystats()

RedisGears Command: RG.PYSTATS

Gears.pystats()→ redgrease.data.PyStats
Gets memory usage statisticy from the Python interpreter

Returns Python interpretere memory statistics, including total, peak and current amount of allocated
memory, in bytes.

Return type redgrease.data.PyStats

3.2. RedisGears Commands 35

https://oss.redislabs.com/redisgears/1.0/commands.html#rgdropexecution
https://oss.redislabs.com/redisgears/1.0/commands.html#rgpydumpreqs
https://oss.redislabs.com/redisgears/1.0/commands.html#rgpystats

redgrease

3.2.11 Get Cluster Information

redgrease.Gears.infocluster()

RedisGears Command: RG.INFOCLUSTER

Gears.infocluster()→ redgrease.data.ClusterInfo
Gets information about the cluster and its shards.

Returns Cluster information or None if not in cluster mode.

Return type redgrease.data.ClusterInfo

3.2.12 Refresh Cluster Topology

redgrease.Gears.refreshcluster()

RedisGears Command: RG.REFRESHCLUSTER

Gears.refreshcluster()→ bool
Refreshes the local node’s view of the cluster topology.

Returns True if successful.

Return type bool

Raises redis.exceptions.ResponseError – If not successful

3.2.13 Get a Detailed Execution Plan

redgrease.Gears.getexecution()

RedisGears Command: RG.GETEXECUTION

Gears.getexecution(id: Union[bytes, str, redgrease.data.ExecID, redgrease.data.ExecutionInfo], lo-
cality: Optional[redgrease.data.ExecLocality] = None) → Mapping[bytes, red-
grease.data.ExecutionPlan]

Get the execution plan details for a function in the execution list.

Parameters

• id (Union[redgrease.data.ExecutionInfo, redgrease.data.
ExecID, bytes, str]) – Execution identifier for the function to fetch execution plan
for.

• locality (Optional[redgrease.data.ExecLocality], optional) – Set
to ‘Shard’ to get only local execution plan and set to ‘Cluster’ to collect executions from all
shards. Defaults to ‘Shard’ in stand-alone mode, but “Cluster” in cluster mode.

Returns A dict, mapping cluster ID to ExecutionPlan

Return type Mapping[bytes, redgrease.data.ExecutionPlan]

36 Chapter 3. RedGrease Client

https://oss.redislabs.com/redisgears/1.0/commands.html#rginfocluster
https://oss.redislabs.com/redisgears/1.0/commands.html#rgrefreshcluster
https://oss.redislabs.com/redisgears/1.0/commands.html#rggetexecution

redgrease

3.3 Get and Set Gears Configurations

The above mentioned Gears object contains a property config of type redgrease.config.Config, through
which various pre-defined and custom configuration setting can be read an written.

This object contains readable, and for certain options also writable, properties for the predefined RedisGears config-
urations. It also contains getter and setter methods that allows access to both the pre-defined as well as user
defined configurations, in bulk.

RedisGears Commands: RG.CONFIGGET and RG.CONFIGSET

class redgrease.config.Config(redis: redis.client.Redis)
Redis Gears Config

Instantiate a Redis Gears Confg object

Parameters redis (redis.Redis) – Redis client / connection for underlying communication.

ValueTypes: Dict[str, Union[Type[T], Callable[[Any], T]]] = {'CreateVenv': <class 'bool'>, 'DependenciesSha256': <function safe_str>, 'DependenciesUrl': <function safe_str>, 'DownloadDeps': <class 'bool'>, 'ExecutionMaxIdleTime': <class 'int'>, 'ExecutionThreads': <class 'int'>, 'MaxExecutions': <class 'int'>, 'MaxExecutionsPerRegistration': <class 'int'>, 'ProfileExecutions': <class 'bool'>, 'PythonAttemptTraceback': <class 'bool'>, 'PythonInstallReqMaxIdleTime': <class 'int'>, 'PythonInstallationDir': <function safe_str>, 'SendMsgRetries': <class 'int'>}
Mapping from config name to its corresponding value type, transformer or constructor.

redis

get(*config_option: Union[bytes, str])→ Dict[Union[bytes, str], Any]
Get the value of one or more built-in configuration or a user-defined options.

Parameters *config_option (Union[bytes, str]) – One or more names/key of con-
figurations to get.

Returns Dict of the requested config options mapped to their corresponding values.

Return type Dict[Union[bytes, str], Any]

set(config_dict=None, **config_setting)→ bool
Set a value of one ore more built-in configuration or a user-defined options.

This function offers two methods of providing the keys and values to set; either as a mapping/dict or b
key-word arguments.

Parameters

• config_dict (Mapping[str, Any]) – Mapping / dict of config values to set.

• **config_setting (Any) – Key-word arguments to set as config values.

Returns True if all was successful, False oterwise

Return type bool

get_single(config_option: Union[bytes, str])
Get a single config value.

Parameters config_option (str) – Name of the config to get.

Returns The value of the config option.

Return type Any

property MaxExecutions
Get the current value for the MaxExecutions config option.

The MaxExecutions configuration option controls the maximum number of executions that will be saved
in the executions list. Once this threshold value is reached, older executions will be deleted from the list
by order of their creation (FIFO).

Only executions that had finished (e.g. the ‘done’ or ‘aborted’ status) are deleted.

3.3. Get and Set Gears Configurations 37

https://oss.redislabs.com/redisgears/1.0/commands.html#rgconfigget
https://oss.redislabs.com/redisgears/1.0/commands.html#rgconfigset

redgrease

property MaxExecutionsPerRegistration
Get the current value for the MaxExecutionsPerRegistration config option.

The MaxExecutionsPerRegistration configuration option controls the maximum number of executions that
are saved in the list per registration. Once this threshold value is reached, older executions for that regis-
tration will be deleted from the list by order of their creation (FIFO).

Only executions that had finished (e.g. the ‘done’ or ‘aborted’ status) are deleted.

property ProfileExecutions
Get the current value for the ProfileExecutions config option.

The ProfileExecutions configuration option controls whether executions are profiled.

Note: Profiling impacts performance Profiling requires reading the server’s clock, which is a costly
operation in terms of performance. Execution profiling is recommended only for debugging purposes and
should be disabled in production.

property PythonAttemptTraceback
Get the current value for the PythonAttemptTraceback config option.

The PythonAttemptTraceback configuration option controls whether the engine tries producing stack traces
for Python runtime errors.

property DownloadDeps
Get the current value for the DownloadDeps config option.

The DownloadDeps configuration option controls whether or not RedisGears will attempt to download
missing Python dependencies.

property DependenciesUrl
Get the current value for the DependenciesUrl config option.

The DependenciesUrl configuration option controls the location from which RedisGears tries to download
its Python dependencies.

property DependenciesSha256
Get the current value for the DependenciesSha256 config option.

The DependenciesSha256 configuration option specifies the SHA265 hash value of the Python dependen-
cies. This value is verified after the dependencies have been downloaded and will stop the server’s startup
in case of a mismatch.

property PythonInstallationDir
Get the current value for the PythonInstallationDir config option.

The PythonInstallationDir configuration option specifies the path for RedisGears’ Python dependencies.

property CreateVenv
Get the current value for the CreateVenv config option.

The CreateVenv configuration option controls whether the engine will create a virtual Python environment.

property ExecutionThreads
Get the current value for the ExecutionThreads config option.

The ExecutionThreads configuration option controls the number of threads that will run executions.

property ExecutionMaxIdleTime
Get the current value for the ExecutionMaxIdleTime config option.

The ExecutionMaxIdleTime configuration option controls the maximal amount of idle time (in millisec-
onds) before execution is aborted. Idle time means no progress is made by the execution.

38 Chapter 3. RedGrease Client

redgrease

The main reason for idle time is an execution that’s blocked on waiting for records from another shard that
had failed (i.e. crashed). In that case, the execution will be aborted after the specified time limit. The idle
timer is reset once the execution starts progressing again.

property PythonInstallReqMaxIdleTime
Get the current value for the PythonInstallReqMaxIdleTime config option.

The PythonInstallReqMaxIdleTime configuration option controls the maximal amount of idle time (in
milliseconds) before Python’s requirements installation is aborted. Idle time means that the installation
makes no progress.

The main reason for idle time is the same as for ExecutionMaxIdleTime .

property SendMsgRetries
Get the current value for the SendMsgRetries config option. The SendMsgRetries configuration option
controls the maximum number of retries for sending a message between RedisGears’ shards. When a
message is sent and the shard disconnects before acknowledging it, or when it returns an error, the message
will be resent until this threshold is met.

Setting the value to 0 means unlimited retries.

Courtesy of : Pte. Ltd.

3.3. Get and Set Gears Configurations 39

https://www.lyngon.com

redgrease

40 Chapter 3. RedGrease Client

CHAPTER

FOUR

EXECUTING GEAR FUNCTIONS

Gear functions can either be defined as a Raw Function String, in Script File Path, as or dynamically constructed
GearFunction Object. There are some subtleties and variations the three types that we’ll go through in their respective
section, but either type can be executed using the redgrease.Gears.pyexecute() method.

import redgrease

gear_fun = ... # Either a function string, script file path or GearFunction object

connection = redgrease.RedisGears()

result = connection.gears.pyexecute(gear_fun)

print(result.value)
print(result.errors)

4.1 Raw Function String

The most basic way of creating and executing Gear Functions is by passing a raw function string to the redgrease.
Gears.pyexecute() method:

import redgrease

raw_gear_fun = "GearsBuilder('KeysReader').map(lambda x: x['type']).countby().run()"

rg = redgrease.RedisGears()

result = rg.gears.pyexecute(raw_gear_fun)

Note: You would rarely construct Gear functions this way, but it is fundamentally what happens under the hood for
all the other methods of execution, and corresponds directly to the underlying RedisGears protocol.

41

redgrease

4.2 Script File Path

A more practical way of defining Gear Functions is by putting them in a separate script file, and executing it by passing
the path to the redgrease.Gears.pyexecute() method:

import redgrease

gear_script_path = "./path/to/some/gear/script.py"

rg = redgrease.RedisGears()

result = rg.gears.pyexecute(gear_script_path)

These scripts may be plain vanilla RedisGears functions that only use the built-in runtime functions, and does not
import redgrease or use any of its features. In this case the redgrease package does not need to be installed on the
runtime.

If the function is importing and using any RedGrease construct from the redgrease package, then when calling
redgrease.Gears.pyexecute() method, the enforce_redgrease must be set in order to ensure that the
package is installed on the RedisGears runtime.

In most cases you would just set it to True to get the latest stable RedGrease runtime package, but you may specify a
specific version or even repository.

A notable special case is when functions in the script are only importing RedGrease modules that do not require any
3rd party dependencies (see list in the Redgrease Extras Options section). If this is the case then you may want to set
enforce_redgrease="redgrease" (without the extras “[runtime]”), when calling redgrease.Gears.
pyexecute(), as this is a version of redgrease without any external dependencies.

Another case is when you are only using explicitly imported Builtin Runtime Functions (e.g. from redgrease.
runtime import GB, logs, execute) , and nothing else, as you in this case do not need any version of
RedGrease on your RedisGears server runtime. In this case you can actually set enforce_redgrease=False.

More details about the various runtime installation options, which modules and functions are impacted, as well as the
respective 3rd party dependencies can be found in the Redgrease Extras Options section.

Note: By default all Gear functions run in a shared runtime environment, and as a consequence all requirements /
dependencies from different Gear functions are all installed in the same Python environment.

4.3 GearFunction Object

You can dynamically create a GearFunction object, directly in the same application as your Gears client / connection,
by using any of the constructs well talk about in the GearFunction section, such as for example GearsBuilder or the
“Reader” classes such as KeysReader and StreamReader etc.

GearFunction objects can be executed in three different ways; Using pyexecute, the on-method or directly in run or
execute.

Note: There are two drawbacks of executing GearFunction objects, compared to executing Gear functions using
either raw string, or by script file:

1. The Python version of local application must match the the Python version in the RedisGears runtime (Python
3.7, at the time of writing this).

42 Chapter 4. Executing Gear Functions

redgrease

When executing Gear functions using either raw string, or by script file, it doesn’t matter which
version of Python the application is using, as long as it is Python 3.6 or later and the the code in the
raw string is compatible with the Python version in the RedisGears runtime,

2. The redgrease[runtime] package must be installed on the RedisGears Runtime environment.

If you pass a GearFunction to redgrease.Gears.pyexecute(), it will attempt to install the
latest stable version of redgrease[runtime] on the server, unless already installed, or if explic-
itly told otherwise using the enforce_redgrease argument.

When executing Gear functions using either raw string, or by script file, redgrease only have to be
installed if the function is importing any redgrease modules, of course.

As an example let’s assume, that we have instantiated a Gear client and created a very simple “open” Gear function as
follows:

Function that collecs the keys per type
get_keys_by_type = redgrease.KeysReader().aggregateby(

lambda record: record["type"],
set(),
lambda _, acc, rec: acc | set([rec["key"]]),
lambda _, acc, lacc: acc | lacc,

)

In this example get_keys_by_type is our simple “open” Gear function, which groups all the keys by their type
(“string”, “hash”, “stream” etc) , and within each group collects the keys in a set.

We call it “open” because it has not been “closed” by a run() or register() action. The output from the last
operation, here countby(), can therefore be used as input for a subsequent operations, if we’d like. The chain of
operations of the function is “open-ended”, if you will.

Once an “open” function is terminated with either a run() or register() action, it is considered “closed”, and it
can be executed, but not further extended.

The GearFunction section, goes into more details of these concepts and the different classes of GearFunctions.

RedGrease allows for open Gear functions, such as key_counter to be used as a starting point for other Gear
functions, so lets create two “closed” functions from it:

Transform to a single dict from type to keys
get_keys_by_type_dict = (

get_keys_by_type.map(lambda record: {record["key"]: record["value"]})
.aggregate({}, lambda acc, rec: {**acc, **rec})
.run()

)

Find the most common key-type
get_commonest_type = (

get_keys_by_type.map(lambda x: (x["key"], len(x["value"])))
.aggregate((None, 0), lambda acc, rec: rec if rec[1] > acc[1] else acc)
.run()

)

These two new functions, get_keys_by_type_dict and get_commonest_type, both extend the earlier
get_keys_by_type function with more operations. The former function collates the results in a dictionary. The
latter finds the key-type that is most common in the keyspace.

Note that both functions end with the run() action, which indicates that the functions will run as an on-demand
batch-job, but also that it is ‘closed’ and cannot be extended further.

4.3. GearFunction Object 43

redgrease

Let’s execute these functions in some different ways.

4.3.1 Execute with Gears.pyexecute() Client method

The most idiomatic way of executing GearFunction objects is just to pass it to Gears.pyexecute():

Execute "closed" GearFunction object with a Gear clients' `pyexecute` method
r = redgrease.RedisGears()

result_1 = r.gears.pyexecute(get_keys_by_type_dict)

The result might look something like:

{
'hash': {'hash:1', 'hash:0', ...},
'string': {'string:0', 'string:1', 'string:2', ...}
...

}

If you pass an “open” gear function, like our initial get_keys_by_type, to Gears.pyexecute(), it will still
try its best to execute it, by assuming that you meant to close it with an empty run() action in the end:

Execute "open" GearFunction with a Gear clients' `pyexecute` method
result_3 = r.gears.pyexecute(get_keys_by_type)

The result from our function might look something like:

[
{'key': 'hash', 'value': {'hash:1', 'hash:0', ...}},
{'key': 'string', 'value': {'string:0', 'string:1', 'string:2', ...}},
...

]

4.3.2 Execute with ClosedGearFunction.on() GearFunction method

Another short-form way of running a closed GearFunction is to call its its on() method.

Execute "closed" GearFunction object with its `on` method
result_2 = get_commonest_type.on(r)

This approach only works with “closed” functions, but works regardless if the function has been closed with the
run() or register() action.

The result for our specific function might look something like:

("string", 3)

The API specification is as follows:

ClosedGearFunction.on(gears_server, unblocking: bool = False, requirements: Optional[Iterable[str]]
= None, replace: Optional[bool] = None, **kwargs)

Execute the function on a RedisGears. This is equivalent to passing the function to Gears.pyexecute

Parameters

• gears_server ([type]) – Redis client / connection object.

44 Chapter 4. Executing Gear Functions

redgrease

• unblocking (bool, optional) – Execute function unblocking, i.e. asynchronous.
Defaults to False.

• requirements (Iterable[str], optional) – Additional requirements / depen-
dency Python packages. Defaults to None.

Returns The result of the function, just as Gears.pyexecute

Return type redgrease.data.ExecutionResult

4.3.3 Execute directly in run() or register()

An even more succinct way of executing GearFunction objects is to specify the target connection directly in the action
that closes the function. I.e the run() or register() action.

RedGrease has extended these methods with a couple additional arguments, which are not in the standard RedisGears
API:

• requirements - Takes a list of requirements / external packages that the function needs installed.

• on - Takes a Gears (or RedisGears) client and immediately executes the function on it.

Execute GearFunction using `on` argument in "closing" method
result_4 = get_keys_by_type.run(on=r)

This approach only works with “closed” functions, but works regardless if the function has been closed with the
run() or register() action.

The result for our specific function should be identical to when we ran the function using pyexecute:

[
{'key': 'hash', 'value': {'hash:1', 'hash:0', ...}},
{'key': 'string', 'value': {'string:0', 'string:1', 'string:2', ...}},
...

]

4.4 pyexecute API Reference

Gears.pyexecute(gear_function: Union[str, redgrease.runtime.GearsBuilder, red-
grease.gears.GearFunction] = '', unblocking=False, requirements: Op-
tional[Iterable[Union[str, packaging.requirements.Requirement]]] = None, en-
force_redgrease: Optional[Union[bool, str, packaging.version.Version, packag-
ing.requirements.Requirement]] = None)→ redgrease.data.ExecutionResult

Execute a gear function.

Parameters

• gear_function (Union[str, redgrease.gears.GearFunction],
optional) – Function to execute. Either:

– A raw function string containing a clear-text serialized Gears Python function as per the
examples in the official documentation.

– A script file path.

– A GearFunction object, e.g. GearsBuilder or either of the Readers types.

Note:

4.4. pyexecute API Reference 45

https://oss.redislabs.com/redisgears/intro.html#the-simplest-example

redgrease

– Python version must match the Gear runtime.

– If the function is not “closed” with a run or register operation, an run() operation
without additional arguments will be assumed, and automatically added to the function to
close it.

– The default for enforce_redgrease is True.

Defaults to "", i.e. no function.

• unblocking (bool, optional) – Execute function without waiting for it to finish
before returning.

Defaults to False. I.e. block until the function returns or fails.

• requirements (Iterable[Union[None, str, redgrease.
requirements.Requirement]], optional) – List of 3rd party package
requirements needed to execute the function on the server.

Defaults to None.

• enforce_redgrease (redgrease.requirements.PackageOption,
optional) – Indicates if redgrease runtime package requirement should be added
or not, and potentially which version and/or extras or source.

It can take several optional types:

– None : No enforcement. Requirements are passed through, with or without ‘redgrease’
runtime package.

– True : Enforces latest "redgrease[runtime]" package on PyPi,

– False : Enforces that redgrease is not in the requirements list, any redgrease require-
ments will be removed from the function’s requirements. Note that it will not force
redgrease to be uninstalled from the server runtime.

– Otherwise, the argument’s string-representation is evaluated, and interpreted as either:

a. A specific version. E.g. "1.2.3".

b. A version qualifier. E.g. ">=1.0.0".

c. Extras. E.g. "all" or "runtime". Will enforce the latest version on PyPi, with
this/these extras.

d. Full requirement qualifier or source. E.g: "redgrease[all]>=1.2.3"
or "redgrease[runtime]@git+https://github.com/lyngon/
redgrease.git@main"

Defaults to None when gear_function is a script file path or a raw function string, but
True when it is a GearFunction object.

Returns

The returned ExecutionResult has two properties: value and errors, containing the
result value and any potential errors, respectively.

The value contains the result of the function, unless:

• When used in ‘unblocking’ mode, the value is set to the execution ID

• If the function has no output (i.e. it is closed by register() or for some other reason is not
closed by a run() action), the value is True (boolean).

46 Chapter 4. Executing Gear Functions

redgrease

Any errors generated by the function are accumulated in the errors property, as a list.

Note: The ExecutionResult object itself behaves for the most part like its contained
value, so for many simple operations, such as checking True-ness, result length, iterate results
etc, it can be used directly. But the the safest was to get the actual result is by means of the
value property.

Return type redgrease.data.ExecutionResult

Raises redis.exceptions.ResponseError – If the function cannot be parsed.

4.5 on API Reference

ClosedGearFunction.on(gears_server, unblocking: bool = False, requirements: Optional[Iterable[str]]
= None, replace: Optional[bool] = None, **kwargs)

Execute the function on a RedisGears. This is equivalent to passing the function to Gears.pyexecute

Parameters

• gears_server ([type]) – Redis client / connection object.

• unblocking (bool, optional) – Execute function unblocking, i.e. asynchronous.
Defaults to False.

• requirements (Iterable[str], optional) – Additional requirements / depen-
dency Python packages. Defaults to None.

Returns The result of the function, just as Gears.pyexecute

Return type redgrease.data.ExecutionResult

Courtesy of : Pte. Ltd.

4.5. on API Reference 47

https://www.lyngon.com

redgrease

48 Chapter 4. Executing Gear Functions

CHAPTER

FIVE

BUILTIN RUNTIME FUNCTIONS

The RedisGears Python server runtime automagically expose a number of functions into the scope of any Gear func-
tions being executed. These “builtin” runtime functions can be used in Gear Functions without importing any module
or package:

• execute

• atomic

• configGet

• gearsConfigGet

• hashtag

• log

• GearsBuilder

Note: With the exception of the GearsBuilder neither these functions cannot be used in normal application code
outside Gear functions running in the RedisGears server runtime.

RedGrease expose its own wrapped versions of these RedisGears runtime functions which, for the most part, behave
exactly like the originals, but require you to import them, either from the top level redgrease package, or from the
redgrease.runtime module.

But if these are the same, why would you bother with them?

The main reason to use the RedGrease versions, is that they aid during development by enabling most Integrated
Development Environment (IDE) access to the doc-strings and type-annotations that the RedGrease versions are pro-
viding.

This alone can help greatly in developing gears faster (e.g. through auto-complete) and with less errors (e.g. with type
checking).

Note: If you are only using these wrapped runtime functions in your Gear Functions, and no other RedGrease
features, then you actually don’t need RedGrease to be installed on the RedisGears server runtime. Explicitly setting
enforce_redgrease argument to False when executing a function script with to Gears.pyexecute(), will
not add any redgrease requirement to the function and simply ignore any explicit runtime imports.

The section, Redgrease Extras Options, goes deeper into the details of the various RedGrease extras options, and their
limitations.

Another reason to use the functions from RedGrease runtime, is that it contains some slightly enhanced variants of
the defaults, like for example, the log, or have alternative versions, like hashtag3.

49

redgrease

And if you are going to use other RedGrease features, then you will have to load the top level redgrease namespace
anyway, which automatically expose the runtime functions.

The RedGrease runtime functions can be imported in a few ways:

• Directly from the package top-level, e.g:

from redgrease import GearsBuilder, log, atomic, execute

• Explicitly from the redgrease.runtime module:

from redgrease.runtime import GearsBuilder, log, atomic, execute

• By importing the redgrease.runtime module:

import redgrease.runtime

It is possible to load all symbols, using *, although it’s generally not a recommended practice, particularly not for the
top level redgrease package.

5.1 execute

RedGrease’s version of runtime.execute() behaves just like the default.

This function executes an arbitrary Redis command inside Gear functions.

Note: For more information about Redis commands refer to:

• Redis commands

Arguments

• command : the command to execute

• args : the command’s arguments

Example:

from redgrease import execute

Pings the server (reply should be 'PONG')
reply = execute('PING')

In most cases, a more convenient approach is to use Serverside Redis Commands to execute Redis Commands inside
Gear Functions.

Longer Example:

from redgrease import GearsBuilder, execute

def age(x):
''' Extracts the age from a person's record '''
return int(x['value']['age'])

def cas(x):
''' Checks and sets the current maximum '''
k = 'age:maximum'

(continues on next page)

50 Chapter 5. Builtin Runtime Functions

https://redis.io/commands

redgrease

(continued from previous page)

v = execute('GET', k) # read key's current value
v = int(v) if v else 0 # initialize to 0 if N
if x > v: # if a new maximum found
execute('SET', k, x) # set key to new value

Event handling function registration
gb = GearsBuilder()
gb.map(age)
gb.foreach(cas)
gb.register('person:*')

5.1.1 execute API Reference

redgrease.runtime.execute(command: str, *args)→ bytes
Execute an arbitrary Redis command.

Parameters command (str) – The commant to execute

Returns Raw command response

Return type bytes

5.2 atomic

RedGrease’s version of runtime.atomic() behaves just like the default.

Atomic provides a context manager that ensures that all operations in it are executed atomically by blocking the main
Redis process.

Example:

from redgrease import atomic, GB, hashtag

Increments two keys atomically
def transaction(_):

with atomic():
execute('INCR', f'{{{hashtag()}}}:foo')
execute('INCR', f'{{{hashtag()}}}:bar')

gb = GB('ShardsIDReader')
gb.foreach(transaction)
gb.run()

5.2.1 atomic API Reference

class redgrease.runtime.atomic
The atomic() Python context is imported to the runtime’s environment by default.

The context ensures that all operations in it are executed atomically by blocking he main Redis process.

5.2. atomic 51

https://book.pythontips.com/en/latest/context_managers.html

redgrease

5.3 configGet

RedGrease’s version of runtime.configGet() behaves just like the default.

This function fetches the current value of a RedisGears configuration options.

Example:

from redgrease import configGet

Gets the current value for 'ProfileExecutions'
foo = configGet('ProfileExecutions')

5.3.1 configGet API Reference

redgrease.runtime.configGet(key: str)→ str
Fetches the current value of a RedisGears configuration option.

Parameters key (str) – The configuration option key

5.4 gearsConfigGet

RedGrease’s version of runtime.gearsConfigGet() behaves just like the default.

This function fetches the current value of a RedisGears configuration options, and returns a default value if that key
does not exist.

Example:

from redgrease import gearsConfigGet

Gets the 'foo' configuration option key and defaults to 'bar'
foo = gearsConfigGet('foo', default='bar')

5.4.1 gearsConfigGet API Reference

redgrease.runtime.gearsConfigGet(key: str, default=None)→ str
Fetches the current value of a RedisGears configuration option and returns a default value if that key does not
exist.

Parameters

• key (str) – The configuration option key.

• default ([type], optional) – A default value. Defaults to None.

52 Chapter 5. Builtin Runtime Functions

https://oss.redislabs.com/redisgears/1.0/configuration.html
https://oss.redislabs.com/redisgears/1.0/configuration.html

redgrease

5.5 hashtag

RedGrease’s version of runtime.hashtag() behaves just like the default.

This function returns a hashtag that maps to the lowest hash slot served by the local engine’s shard. Put differently, it
is useful as a hashtag for partitioning in a cluster.

5.5.1 hashtag API Reference

redgrease.runtime.hashtag()→ str
Returns a hashtag that maps to the lowest hash slot served by the local engine’s shard. Put differently, it is useful
as a hashtag for partitioning in a cluster.

Returns A hastag that maps to the lowest hash slot served by the local engine.

Return type str

5.6 hashtag3

This function, runtime.hashtag3(), is not part of the default RedisGears runtime scope, and is introduced by
RedGrease. It is a slightly modified version of version of runtime.hashtag() but adds enclosing curly braces
("{" and "}") to the hashtag, so it can be used directly inside Python f-strings.

5.6.1 hashtag3 API Reference

redgrease.runtime.hashtag3()→ str
Provides a the same value as hashtag, but surrounded by curly braces.

For example, if hashtag() generates “06S”, then `hashtag3’ gives “{06S}”.

This is useful for creating slot-specific keys using f-strings, inside gear functions, as the braces are already
escaped. Example:

redgrease.cmd.set(f"{hashtag3()}", some_value)

Returns A braces-enclosed hashtag string

Return type str

5.7 log

RedGrease’s version of runtime.log() behaves almost like the default. It prints a message to Redis’ log, but
forces the the argument to a string before logging it.

(The built in default throws an error if the argument is not a string.)

Example:

from redgrease import GB, log

Dumps every datum in the DB to the log for "debug" purposes
GB().foreach(lambda x: log(str(x), level='debug')).run()

5.5. hashtag 53

https://realpython.com/python-f-strings/

redgrease

5.7.1 log API Reference

redgrease.runtime.log(message: str, level: str = 'notice')
Print a message to Redis’ log.

Parameters

• message (str) – The message to output

• level (str, optional) – Message loglevel. Either:

- 'debug'
- 'verbose'
- 'notice'
- 'warning'

Defaults to ‘notice’.

5.8 GearsBuilder

The runtime.GearsBuilder (as well as its short-form alias GB), behaves exactly like the default RedisGears
version, with a couple of exceptions:

1. It has a property gearfunction which gives access to the constructed GearFunction object at that that point
in the builder pipeline.

2. Any additional arguments passed to its constructor, will be passed as defaults to the run() or register()
action that terminates the build.

Note: The runtime.GearsBuilder objects are mutable with respect to the operations, whereas GearFunction
objects are immutable and returns a new function when an operation is applied.

This means that:

fun = GearsBuilder()
fun.map(...)
fun.aggregateby(...)

Creates one single function equivalent to:

fun = KeysReader().map(...).aggregateby(...)

Whereas:

sad = KeysReader()
sad.map(...)
sad.aggregateby(...)

Creates three functions; One named sad that is just the KeysReader, one which is sad with a Map and one which is
sad with a AggregateBy. The latter two functions are also not bound to any variables in this example.

54 Chapter 5. Builtin Runtime Functions

redgrease

5.8.1 GearsBuilder API Reference

class redgrease.runtime.GearsBuilder(reader: str = 'KeysReader', defaultArg: str = '*', desc:
Optional[str] = None, *args, **kwargs)

The RedisGears GearsBuilder class is imported to the runtime’s environment by default, and this class is a
RedGrease wrapper of it.

It exposes the functionality of the function’s context builder.

Warning: GearsBuilder is mutable with respect to the operations.

The GearsBuilder is a subclass of gears.OpenGearFunction, but unlike other OpenGearFunc-
tions, the GearsBuilder mutates an internal GearFunction instead of creating a new one for each operation.
This behavior is deliberate, in order to be consistent with the original GearsBuilder.

Gear function / process factory

Parameters

• reader (str, optional) – Input records reader Defining where the input to the gear
will come from. One of:

– "KeysReader"

– "KeysOnlyReader"

– "StreamReader"

– "PythonReader"

– "ShardsReader"

– "CommandReader"

Defaults to ‘KeysReader’.

• defaultArg (str, optional) – Additional arguments to the reader. These are usu-
ally a key’s name, prefix, glob-like or a regular expression. Its use depends on the function’s
reader type and action. Defaults to ‘*’.

• desc (str, optional) – An optional description. Defaults to None.

property gearfunction
The “open” GearFunction object at this step in the pipeline.

This GearFunction is itself immutable but can be built upon to create new GearFunctions, independently
from the GearsBuilder.

Returns The current GearFunction object.

Return type redgrease.gears.OpenGearFunction

run(arg: Optional[str] = None, convertToStr: bool = True, collect: bool = True, requirements: Op-
tional[Iterable[str]] = None, on=None, **kwargs)→ redgrease.gears.ClosedGearFunction
Create a “closed” function to be Run as in “batch-mode”.

Batch functions are executed once and exits once the data is exhausted by its reader.

Parameters

• arg (str, optional) – An optional argument that’s passed to the reader as its de-
faultArg. It means the following:

– A glob-like pattern for the KeysReader and KeysOnlyReader readers.

5.8. GearsBuilder 55

https://oss.redislabs.com/redisgears/1.0/functions.html#context-builder

redgrease

– A key name for the StreamReader reader.

– A Python generator for the PythonReader reader.

Defaults to None.

• convertToStr (bool, optional) – When True, adds a map operation to the
flow’s end that stringifies records. Defaults to False.

• collect (bool, optional) – When True adds a collect operation to flow’s end.
Defaults to False.

• requirements (Iterable[str], optional) – Additional requirements / de-
pendency Python packages. Defaults to None.

• on (redis.Redis) – Immediately execute the function on this RedisGears system.

• **kwargs – Additional parameters to the run operation.

Returns A new closed batch function, if on is not specified. An execution result, if on is speci-
fied.

Return type Union[ClosedGearFunction, redgrease.data.ExecutionResult]

Raises TypeError – If the function does not support batch mode.

register(prefix: str = '*', convertToStr: bool = True, collect: bool = True, mode: Op-
tional[str] = None, onRegistered: Optional[Callable[], None]] = None, eventTypes: Op-
tional[Iterable[str]] = None, keyTypes: Optional[Iterable[str]] = None, readValue: Op-
tional[bool] = None, batch: Optional[int] = None, duration: Optional[int] = None, on-
FailedPolicy: Optional[str] = None, onFailedRetryInterval: Optional[int] = None, trim-
Stream: Optional[bool] = None, trigger: Optional[str] = None, requirements: Op-
tional[Iterable[str]] = None, on=None, **kwargs)→ redgrease.gears.ClosedGearFunction

Create a “closed” function to be Register ‘ed as an event-triggered function.

Event functions are executed each time an event arrives. Each time it is executed, the function operates on
the event’s data and once done is suspended until its future invocations by new events. :param prefix: Key
prefix pattern to match on.

Not relevant for ‘CommandReader’ readers (see ‘trigger’). Defaults to "*".

Parameters

• convertToStr (bool, optional) – When True adds a map operation to the
flow’s end that stringifies records. Defaults to True.

• collect (bool, optional) – When True adds a collect operation to flow’s end.
Defaults to False.

• mode (str, optional) – The execution mode of the function. Can be one of:

– "async":

Execution will be asynchronous across the entire cluster.

– "async_local":

Execution will be asynchronous and restricted to the handling shard.

– "sync":

Execution will be synchronous and local.

Defaults to "async".

56 Chapter 5. Builtin Runtime Functions

redgrease

• onRegistered (Registrator, optional) – A function that’s called on each
shard upon function registration. It is a good place to initialize non-serializeable objects
such as network connections. Defaults to None.

• eventTypes (Iterable[str], optional) – For KeysReader only. A whitelist
of event types that trigger execution when the KeysReader are used. The list may contain
one or more:

– Any Redis or module command

– Any Redis event

Defaults to None.

• keyTypes (Iterable[str], optional) – For KeysReader and KeysOnlyReader
only. A whitelist of key types that trigger execution when using the KeysReader or
KeysOnlyReader readers. The list may contain one or more from the following:

– Redis core types:

"string", "hash", "list", "set", "zset" or "stream"

– Redis module types:

"module"

Defaults to None.

• readValue (bool, optional) – For KeysReader only. When False the value will
not be read, so the ‘type’ and ‘value’ of the record will be set to None. Defaults to True.

• batch (int, optional) – For StreamReader only. The number of new messages that
trigger execution. Defaults to 1.

• duration (int, optional) – For StreamReader only. The time to wait before exe-
cution is triggered, regardless of the batch size (0 for no duration). Defaults to 0.

• onFailedPolicy (str, optional) – For StreamReader only. The policy for han-
dling execution failures. May be one of:

– "continue":

Ignores a failure and continues to the next execution. This is the default policy.

– "abort":

Stops further executions.

– "retry":

Retries the execution after an interval specified with onFailedRetryInterval (default
is one second).

Defaults to "continue".

• onFailedRetryInterval (int, optional) – For StreamReader only. The in-
terval (in milliseconds) in which to retry in case onFailedPolicy is ‘retry’. Defaults to
1.

• trimStream (bool, optional) – For StreamReader only. When True the stream
will be trimmed after execution Defaults to True.

• trigger (str) – For ‘CommandReader’ only, and mandatory. The trigger string that
will trigger the function.

5.8. GearsBuilder 57

redgrease

• requirements (Iterable[str], optional) – Additional requirements / de-
pendency Python packages. Defaults to None.

• on (redis.Redis) – Immediately execute the function on this RedisGears system.

• **kwargs – Additional parameters to the register operation.

Returns A new closed event function, if on is not specified. An execution result, if on is speci-
fied.

Return type Union[ClosedGearFunction, redgrease.data.ExecutionResult]

Raises TypeError – If the function does not support event mode.

map(op: Callable[[InputRecord], OutputRecord], requirements: Optional[Iterable[str]] = None,
**kwargs)→ redgrease.runtime.GearsBuilder
Instance-local Map operation that performs a one-to-one (1:1) mapping of records.

:param op redgrease.typing.Mapper): Function to map on the input records. The function
must take one argument as input (input record) and return something as an output (output record).

Parameters

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Map operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
Map operation as last step.

Return type GearsBuilder

flatmap(op: Optional[Callable[[InputRecord], Iterable[OutputRecord]]] = None, requirements: Op-
tional[Iterable[str]] = None, **kwargs)→ redgrease.runtime.GearsBuilder

Instance-local FlatMap operation that performs one-to-many (1:N) mapping of records.

:param op redgrease.typing.Expander: Function to map on the input records. The func-
tion must take one argument as input (input record) and return an iterable as an output (output
records). Defaults to the ‘identity-function’, I.e. if input is an iterable will be expanded.

Parameters

• optional) – Function to map on the input records. The function must take one
argument as input (input record) and return an iterable as an output (output records).
Defaults to the ‘identity-function’, I.e. if input is an iterable will be expanded.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the FlatMap operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
FlatMap operation as last step.

Return type GearsBuilder

foreach(op: Callable[[InputRecord], None], requirements: Optional[Iterable[str]] = None,
**kwargs)→ redgrease.runtime.GearsBuilder

Instance-local ForEach operation performs one-to-the-same (1=1) mapping.

:param op redgrease.typing.Processor): Function to run on each of the input records.
The function must take one argument as input (input record) and should not return anything.

58 Chapter 5. Builtin Runtime Functions

redgrease

Parameters

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the ForEach operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
ForEach operation as last step.

Return type GearsBuilder

filter(op: Optional[Callable[[InputRecord], bool]] = None, requirements: Optional[Iterable[str]]
= None, **kwargs)→ redgrease.runtime.GearsBuilder

Instance-local Filter operation performs one-to-zero-or-one (1:bool) filtering of records.

:param op redgrease.typing.Filterer: Function to apply on the input records, to decide which ones to keep.
The function must take one argument as input (input record) and return a bool. The input records
evaluated to True will be kept as output records. Defaults to the ‘identity-function’, i.e. records are
filtered based on their own trueess or falseness.

Parameters

• optional) – Function to apply on the input records, to decide which ones to keep.
The function must take one argument as input (input record) and return a bool. The in-
put records evaluated to True will be kept as output records. Defaults to the ‘identity-
function’, i.e. records are filtered based on their own trueess or falseness.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Filter operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
FIlter operation as last step.

Return type GearsBuilder

accumulate(op: Optional[Callable[[T, InputRecord], T]] = None, requirements: Op-
tional[Iterable[str]] = None, **kwargs)→ redgrease.runtime.GearsBuilder

Instance-local Accumulate operation performs many-to-one mapping (N:1) of records.

:param op redgrease.typing.Accumulator: Function to to apply on the input records.

The function must take two arguments as input:

• An accumulator value, and

• The input record.

It should aggregate the input record into the accumulator variable, which stores the state between
the function’s invocations. The function must return the accumulator’s updated value. Defaults to a
list accumulator, I.e. the output will be a list of all inputs.

Parameters

• optional) – Function to to apply on the input records. The function must take two
arguments as input:

– An accumulator value, and

– The input record.

5.8. GearsBuilder 59

redgrease

It should aggregate the input record into the accumulator variable, which stores the
state between the function’s invocations. The function must return the accumulator’s
updated value. Defaults to a list accumulator, I.e. the output will be a list of all inputs.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Accumulate operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with
Accumulate operation as last step.

Return type GearsBuilder

localgroupby(extractor: Optional[Callable[[InputRecord], Key]] = None, reducer: Op-
tional[Callable[[Key, T, InputRecord], T]] = None, requirements: Op-
tional[Iterable[str]] = None, **kwargs)→ redgrease.runtime.GearsBuilder

Instance-local LocalGroupBy operation performs many-to-less mapping (N:M) of records.

:param extractor redgrease.typing.Extractor: Function to apply on the input records, to extact the grouping key.
The function must take one argument as input (input record) and return a string (key). The groups
are defined by the value of the key. Defaults to the hash of the input.

Parameters optional) – Function to apply on the input records, to extact the grouping key.
The function must take one argument as input (input record) and return a string (key). The
groups are defined by the value of the key. Defaults to the hash of the input.

:param reducer redgrease.typing.Reducer: Function to apply on the records of each group, to reduce to a single
value (per group). The function must take (a) a key, (b) an input record and (c) a variable that’s
called an accumulator. It performs similarly to the accumulator callback, with the difference being
that it maintains an accumulator per reduced key / group. Defaults to a list accumulator, I.e. the
output will be a list of all inputs, for each group.

Parameters

• optional) – Function to apply on the records of each group, to reduce to a single
value (per group). The function must take (a) a key, (b) an input record and (c) a vari-
able that’s called an accumulator. It performs similarly to the accumulator callback,
with the difference being that it maintains an accumulator per reduced key / group.
Defaults to a list accumulator, I.e. the output will be a list of all inputs, for each group.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the LocalGroupBy operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
LocalGroupBy operation as last step.

Return type GearsBuilder

limit(length: int, start: int = 0, **kwargs)→ redgrease.runtime.GearsBuilder
Instance-local Limit operation limits the number of records.

Parameters

• length (int) – The maximum number of records.

• start (int, optional) – The index of the first input record. Defaults to 0.

60 Chapter 5. Builtin Runtime Functions

redgrease

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Limit operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
Limit operation as last step.

Return type GearsBuilder

collect(**kwargs)→ redgrease.runtime.GearsBuilder
Cluster-global Collect operation collects the result records.

Parameters **kwargs – Additional parameters to the Collect operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
Collect operation as last step.

Return type GearsBuilder

repartition(extractor: Callable[[InputRecord], Hashable], requirements: Optional[Iterable[str]]
= None, **kwargs)→ redgrease.runtime.GearsBuilder

Cluster-global Repartition operation repartitions the records by shuffling them between shards.

:param extractor redgrease.typing.Extractor): Function that takes a record and calculates a key that is used to
determine the hash slot, and consequently the shard, that the record should migrate to to. The
function must take one argument as input (input record) and return a string (key). The hash slot, and
consequently the destination shard, is determined by the value of the key.

Parameters

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Repartition operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
Repartition operation as last step.

Return type GearsBuilder

aggregate(zero: Optional[T] = None, seqOp: Optional[Callable[[T, InputRecord], T]] = None,
combOp: Optional[Callable[[T, T], T]] = None, requirements: Optional[Iterable[str]]
= None, **kwargs)→ redgrease.runtime.GearsBuilder

Distributed Aggregate operation perform an aggregation on local data then a global aggregation on the
local aggregations.

Parameters zero (Any, optional) – The initial / zero value of the accumulator variable.
Defaults to an empty list.

:param seqOp redgrease.typing.Accumulator: A function to be applied on each of the input records, locally per
shard. It must take two parameters: - an accumulator value, from previous calls - an input record
The function aggregates the input into the accumulator variable, which stores the state between
the function’s invocations. The function must return the accumulator’s updated value. Defaults to
addition, if ‘zero’ is a number and to a list accumulator if ‘zero’ is a list.

Parameters optional) – A function to be applied on each of the input records, locally
per shard. It must take two parameters: - an accumulator value, from previous calls - an
input record The function aggregates the input into the accumulator variable, which stores
the state between the function’s invocations. The function must return the accumulator’s

5.8. GearsBuilder 61

redgrease

updated value. Defaults to addition, if ‘zero’ is a number and to a list accumulator if ‘zero’
is a list.

:param combOp redgrease.typing.Accumulator: A function to be applied on each of the aggregated results of the local
aggregation (i.e. the output of seqOp). It must take two parameters: - an accumulator value, from
previous calls - an input record The function aggregates the input into the accumulator vari-
able, which stores the state between the function’s invocations. The function must return the
accumulator’s updated value. Defaults to re-use the seqOp function.

Parameters

• optional) – A function to be applied on each of the aggregated results of the local
aggregation (i.e. the output of seqOp). It must take two parameters: - an accumulator
value, from previous calls - an input record The function aggregates the input into the
accumulator variable, which stores the state between the function’s invocations. The
function must return the accumulator’s updated value. Defaults to re-use the seqOp
function.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Aggregate operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
Aggregate operation as last step.

Return type GearsBuilder

aggregateby(extractor: Optional[Callable[[InputRecord], Key]] = None, zero: Optional[T] =
None, seqOp: Optional[Callable[[Key, T, InputRecord], T]] = None, combOp: Op-
tional[Callable[[Key, T, T], T]] = None, requirements: Optional[Iterable[str]] = None,
**kwargs)→ redgrease.runtime.GearsBuilder

Distributed AggregateBy operation, behaves like aggregate, but separated on each key, extracted using the
extractor.

:param extractor redgrease.typing.Extractor: Function to apply on the input records, to extact the grouping key.
The function must take one argument as input (input record) and return a string (key). The groups
are defined by the value of the key. Defaults to the hash of the input.

Parameters

• optional) – Function to apply on the input records, to extact the grouping key.
The function must take one argument as input (input record) and return a string (key).
The groups are defined by the value of the key. Defaults to the hash of the input.

• zero (Any, optional) – The initial / zero value of the accumulator variable.
Defaults to an empty list.

:param seqOp redgrease.typing.Accumulator: A function to be applied on each of the input records, locally per
shard and group. It must take two parameters: - an accumulator value, from previous calls - an
input record The function aggregates the input into the accumulator variable, which stores the state
between the function’s invocations. The function must return the accumulator’s updated value.
Defaults to a list reducer.

Parameters optional) – A function to be applied on each of the input records, locally
per shard and group. It must take two parameters: - an accumulator value, from previous
calls - an input record The function aggregates the input into the accumulator variable,

62 Chapter 5. Builtin Runtime Functions

redgrease

which stores the state between the function’s invocations. The function must return the
accumulator’s updated value. Defaults to a list reducer.

:param combOp redgrease.typing.Accumulator): A function to be applied on each of the aggregated results of the local
aggregation (i.e. the output of seqOp). It must take two parameters: - an accumulator value, from
previous calls - an input record The function aggregates the input into the accumulator vari-
able, which stores the state between the function’s invocations. The function must return the
accumulator’s updated value. Defaults to re-use the seqOp function.

Parameters

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the AggregateBy operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
AggregateBy operation as last step.

Return type GearsBuilder

groupby(extractor: Optional[Callable[[InputRecord], Key]] = None, reducer: Op-
tional[Callable[[Key, T, InputRecord], T]] = None, requirements: Optional[Iterable[str]] =
None, **kwargs)→ redgrease.runtime.GearsBuilder

Cluster-local GroupBy operation performing a many-to-less (N:M) grouping of records.

:param extractor redgrease.typing.Extractor: Function to apply on the input records, to extact the grouping key.
The function must take one argument as input (input record) and return a string (key). The groups
are defined by the value of the key. Defaults to the hash of the input.

Parameters optional) – Function to apply on the input records, to extact the grouping key.
The function must take one argument as input (input record) and return a string (key). The
groups are defined by the value of the key. Defaults to the hash of the input.

:param reducer redgrease.typing.Reducer: Function to apply on the records of each group, to reduce to a single
value (per group). The function must take (a) a key, (b) an input record and (c) a variable that’s
called an accumulator. It performs similarly to the accumulator callback, with the difference being
that it maintains an accumulator per reduced key / group. Defaults to a list reducer.

Parameters

• optional) – Function to apply on the records of each group, to reduce to a single
value (per group). The function must take (a) a key, (b) an input record and (c) a vari-
able that’s called an accumulator. It performs similarly to the accumulator callback,
with the difference being that it maintains an accumulator per reduced key / group.
Defaults to a list reducer.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the GroupBy operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
GroupBy operation as last step.

Return type GearsBuilder

5.8. GearsBuilder 63

redgrease

batchgroupby(extractor: Optional[Callable[[InputRecord], Key]] = None, reducer: Op-
tional[Callable[[Key, Iterable[T]], InputRecord]] = None, requirements: Op-
tional[Iterable[str]] = None, **kwargs)→ redgrease.runtime.GearsBuilder

Cluster-local GroupBy operation, performing a many-to-less (N:M) grouping of records.

Note: Using this operation may cause a substantial increase in memory usage during
runtime. Consider using the GroupBy

:param extractor redgrease.typing.Extractor: Function to apply on the input records, to extact the grouping key.
The function must take one argument as input (input record) and return a string (key). The groups
are defined by the value of the key. Defaults to the hash of the input.

Parameters optional) – Function to apply on the input records, to extact the grouping key.
The function must take one argument as input (input record) and return a string (key). The
groups are defined by the value of the key. Defaults to the hash of the input.

:param reducer redgrease.typing.Reducer): Function to apply on the records of each group, to reduce to a single
value (per group). The function must take (a) a key, (b) an input record and (c) a variable that’s
called an accumulator. It performs similarly to the accumulator callback, with the difference being
that it maintains an accumulator per reduced key / group. Default is the length (len) of the input.

Parameters **kwargs – Additional parameters to the BatchGroupBy operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
BatchGroupBy operation as last step.

Return type GearsBuilder

sort(reverse: bool = True, requirements: Optional[Iterable[str]] = None, **kwargs) → red-
grease.runtime.GearsBuilder

Sort the records

Parameters

• reverse (bool, optional) – Sort in descending order (higher to lower). De-
faults to True.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Sort operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
Sort operation as last step.

Return type GearsBuilder

distinct(**kwargs)→ redgrease.runtime.GearsBuilder
Keep only the Distinct values in the data.

Parameters **kwargs – Additional parameters to the Distinct operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
Distinct operation as last step.

Return type GearsBuilder

count(**kwargs)→ redgrease.runtime.GearsBuilder
Count the number of records in the execution.

Parameters **kwargs – Additional parameters to the Count operation.

64 Chapter 5. Builtin Runtime Functions

redgrease

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
Count operation as last step.

Return type GearsBuilder

countby(extractor: Callable[[InputRecord], Hashable] = <function GearsBuilder.<lambda>>, re-
quirements: Optional[Iterable[str]] = None, **kwargs)→ redgrease.runtime.GearsBuilder

Distributed CountBy operation counting the records grouped by key.

:param extractor redgrease.typing.Extractor): Function to apply on the input records, to extact the grouping key.
The function must take one argument as input (input record) and return a string (key). The groups
are defined by the value of the key. Defaults to ‘lambda x: str(x)’.

Parameters

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the CountBy operation.

Returns Itself, i.e. the same GearsBuilder, but with its internal gear function updated with a
CountBy operation as last step.

Return type GearsBuilder

avg(extractor: Callable[[InputRecord], float] = <function GearsBuilder.<lambda>>, requirements:
Optional[Iterable[str]] = None, **kwargs)→ redgrease.runtime.GearsBuilder
Distributed Avg operation, calculating arithmetic average of the records.

:param extractor redgrease.typing.Extractor): Function to apply on the input records, to extact the grouping key.
The function must take one argument as input (input record) and return a string (key). The groups
are defined by the value of the key. Defaults to ‘lambda x: float(x)’.

Parameters

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the map operation.

Returns

A new “open” gear function with an avg operation as last step. GearsBuilder - The same
GearBuilder, but with updated function.

Note that for GearBuilder this method does not return a new GearFunction, but instead
returns the same GearBuilder, but with its internal function updated.

Return type OpenGearFunction

property reader
The reader type, generating the initial input records to the GearFunction.

Returns Either "KeysReader", "KeysOnlyReader", "StreamReader",
"PythonReader", "ShardsIDReader", "CommandReader" or None (If
no reader is defined).

Return type str

property supports_batch_mode
Indicates if the function can run in Batch-mode, by closing it with a run action.

Returns True if the function supports batch mode, False if not.

5.8. GearsBuilder 65

redgrease

Return type bool

property supports_event_mode
Indicates if the function can run in Event-mode, by closing it with a register action.

Returns True if the function supports event mode, False if not.

Return type bool

Now we are finally ready to start building some Gear Functions.

Courtesy of : Pte. Ltd.

66 Chapter 5. Builtin Runtime Functions

https://www.lyngon.com

CHAPTER

SIX

GEARFUNCTION

GearFunction objects are RedGrease’s representation of RedisGears Gear functions. There are a couple of different
classes of GearFunctions to be aware of.

Fig. 1: UML Relationships between different GearFunction

These function objects can be dynamically constructed in either your application code or in separate script files. They
are constructed using either the GearsBuilder (blue) or any of the Readers (green):

67

redgrease

• KeysReader

• KeysOnlyReader

• StreamReader

• PythonReader

• ShardsIDReader

• CommandReader

These are responsible for reading data from different sources into records, either in batch on-demand or when some
event occurs.

GearFunctions are created by “applying” operations, such as Map, GroupBy, Aggregate etc, to either any of the
Readers, a GearsBuilder, or some other GearFunction.

With the exception of the GearsBuilder, “applying” an operation on a GearFunction, doesn’t actually modify it, but
instead creates a new function with that operation added.

All Gear functions therefore consists of a chain of zero or more operations, with some reader at the beginning.

Some of the Reader types have additional reader-specific operations, that can only be “applied” as as their first opera-
tion.

Gear functions are “terminated” by either one of two special Actions. Either Run, for immediate “batch-mode” execu-
tion, or Register, for registering the function for “event-mode” execution.

Some Readers support both “batch-mode” and “event-mode”, but some only support one of the modes.

GearFunctions that have not been “terminated” by either of the Actions, are referred to as an Open GearFunction, as
they can be extended with more operations, creating new GearFunctions.

GearFunctions that have been “terminated” by either of the Actions, are referred to as a Closed GearFunction, as they
cannot be extended with more operations, creating new GearFunctions, but they can be executed.

Note: This “open/closed” terminology is not explicitly used by RedisLabs in their RedisGears Function Documenta-
tion, but it was the most intuitive terminology I could think of, to describe how their design of GearsBuilder actually
behaves.

Early versions of RedGrease used the term “partial” instead of “open”. This was deemed a bit confusing, because
“partial functions” is a very specific, but completely different, thing in mathematics. It was also sometimes confused
with “partial application”, which in computer science is yet another completely different (but powerful) concept.

Every Open GearFunction, including the GearsBuilder, implement the default set of operations.

When a GearFunction is executed, the Reader reads its data, and pass each record to its first operation, which modifies,
filters or aggregates these records into some new output records, which in turn are passed to the next operation and so
on, until the last operation.

The output of the final operation is then either, returned to the caller if it was a “batch-mode” execution and
unblocking was not set to True in Gears.pyexecute(), or stored for later retrieval otherwise.

68 Chapter 6. GearFunction

https://oss.redislabs.com/redisgears/1.0/functions.html
https://oss.redislabs.com/redisgears/1.0/functions.html
https://en.wikipedia.org/wiki/Partial_function
https://en.wikipedia.org/wiki/Partial_application

redgrease

6.1 Open GearFunction

You would never instantiate a gears.OpenGearFunction yourself, but all “open” GearFunctions that has not
yet been “closed” with the Run or Register Actions, inherits from this class.

It is this class that under the hood is responsible for “applying” operations and Actions, and thus creating new Gear-
Functions.

This includes both the runtime.GearsBuilder as well as the Readers:

class redgrease.gears.OpenGearFunction(operation: redgrease.gears.Operation,
input_function: Op-
tional[redgrease.gears.OpenGearFunction] =
None, requirements: Optional[Iterable[str]] =
None)

An open Gear function is a Gear function that is not yet “closed” with a Run action or a Register action.

Open Gear functions can be used to create new “open” gear functions by applying operations, or it can create a
closed Gear function by applying either the Run action or a Register action.

run(arg: Optional[str] = None, convertToStr: bool = True, collect: bool = True,
requirements: Optional[Iterable[str]] = None, on=None, **kwargs) → red-
grease.gears.ClosedGearFunction[InputRecord]
Create a “closed” function to be Run as in “batch-mode”.

Batch functions are executed once and exits once the data is exhausted by its reader.

Parameters

• arg (str, optional) – An optional argument that’s passed to the reader as its
defaultArg. It means the following:

– A glob-like pattern for the KeysReader and KeysOnlyReader readers.

– A key name for the StreamReader reader.

– A Python generator for the PythonReader reader.

Defaults to None.

• convertToStr (bool, optional) – When True, adds a map operation to the
flow’s end that stringifies records. Defaults to False.

• collect (bool, optional) – When True adds a collect operation to flow’s
end. Defaults to False.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• on (redis.Redis) – Immediately execute the function on this RedisGears system.

• **kwargs – Additional parameters to the run operation.

Returns A new closed batch function, if on is not specified. An execution result, if on is
specified.

Return type Union[ClosedGearFunction, redgrease.data.ExecutionResult]

Raises TypeError – If the function does not support batch mode.

6.1. Open GearFunction 69

redgrease

register(prefix: str = '*', convertToStr: bool = True, collect: bool = True, mode:
Optional[str] = None, onRegistered: Optional[Callable[], None]] = None, event-
Types: Optional[Iterable[str]] = None, keyTypes: Optional[Iterable[str]] = None,
readValue: Optional[bool] = None, batch: Optional[int] = None, duration: Op-
tional[int] = None, onFailedPolicy: Optional[str] = None, onFailedRetryInterval: Op-
tional[int] = None, trimStream: Optional[bool] = None, trigger: Optional[str] =
None, requirements: Optional[Iterable[str]] = None, on=None, **kwargs) → red-
grease.gears.ClosedGearFunction[InputRecord]

Create a “closed” function to be Register ‘ed as an event-triggered function.

Event functions are executed each time an event arrives. Each time it is executed, the function operates
on the event’s data and once done is suspended until its future invocations by new events. :param prefix:
Key prefix pattern to match on.

Not relevant for ‘CommandReader’ readers (see ‘trigger’). Defaults to "*".

Parameters

• convertToStr (bool, optional) – When True adds a map operation to the
flow’s end that stringifies records. Defaults to True.

• collect (bool, optional) – When True adds a collect operation to flow’s
end. Defaults to False.

• mode (str, optional) – The execution mode of the function. Can be one of:

– "async":

Execution will be asynchronous across the entire cluster.

– "async_local":

Execution will be asynchronous and restricted to the handling shard.

– "sync":

Execution will be synchronous and local.

Defaults to "async".

• onRegistered (Registrator, optional) – A function that’s called on each
shard upon function registration. It is a good place to initialize non-serializeable ob-
jects such as network connections. Defaults to None.

• eventTypes (Iterable[str], optional) – For KeysReader only. A
whitelist of event types that trigger execution when the KeysReader are used. The
list may contain one or more:

– Any Redis or module command

– Any Redis event

Defaults to None.

• keyTypes (Iterable[str], optional) – For KeysReader and KeysOn-
lyReader only. A whitelist of key types that trigger execution when using the
KeysReader or KeysOnlyReader readers. The list may contain one or more from
the following:

– Redis core types:

"string", "hash", "list", "set", "zset" or "stream"

– Redis module types:

70 Chapter 6. GearFunction

redgrease

"module"

Defaults to None.

• readValue (bool, optional) – For KeysReader only. When False the value
will not be read, so the ‘type’ and ‘value’ of the record will be set to None. Defaults
to True.

• batch (int, optional) – For StreamReader only. The number of new messages
that trigger execution. Defaults to 1.

• duration (int, optional) – For StreamReader only. The time to wait before
execution is triggered, regardless of the batch size (0 for no duration). Defaults to 0.

• onFailedPolicy (str, optional) – For StreamReader only. The policy for
handling execution failures. May be one of:

– "continue":

Ignores a failure and continues to the next execution. This is the default policy.

– "abort":

Stops further executions.

– "retry":

Retries the execution after an interval specified with onFailedRetryInterval
(default is one second).

Defaults to "continue".

• onFailedRetryInterval (int, optional) – For StreamReader only. The
interval (in milliseconds) in which to retry in case onFailedPolicy is ‘retry’. Defaults
to 1.

• trimStream (bool, optional) – For StreamReader only. When True the
stream will be trimmed after execution Defaults to True.

• trigger (str) – For ‘CommandReader’ only, and mandatory. The trigger string
that will trigger the function.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• on (redis.Redis) – Immediately execute the function on this RedisGears system.

• **kwargs – Additional parameters to the register operation.

Returns A new closed event function, if on is not specified. An execution result, if on is
specified.

Return type Union[ClosedGearFunction, redgrease.data.ExecutionResult]

Raises TypeError – If the function does not support event mode.

map(op: Callable[[InputRecord], OutputRecord], requirements: Optional[Iterable[str]] = None,
**kwargs)→ redgrease.gears.OpenGearFunction[redgrease.typing.OutputRecord]
Instance-local Map operation that performs a one-to-one (1:1) mapping of records.

Parameters

• op (redgrease.typing.Mapper) – Function to map on the input records. The
function must take one argument as input (input record) and return something as an
output (output record).

6.1. Open GearFunction 71

redgrease

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Map operation.

Returns A new “open” gear function with a Map operation as last step.

Return type OpenGearFunction

flatmap(op: Optional[Callable[[InputRecord], Iterable[OutputRecord]]] = None,
requirements: Optional[Iterable[str]] = None, **kwargs) → red-
grease.gears.OpenGearFunction[Iterable[redgrease.typing.OutputRecord]]

Instance-local FlatMap operation that performs one-to-many (1:N) mapping of records.

Parameters

• op (redgrease.typing.Expander, optional) – Function to map on the input
records. The function must take one argument as input (input record) and return an
iterable as an output (output records). Defaults to the ‘identity-function’, I.e. if input
is an iterable will be expanded.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the FlatMap operation.

Returns A new “open” gear function with a FlatMap operation as last step.

Return type OpenGearFunction

foreach(op: Callable[[InputRecord], None], requirements: Optional[Iterable[str]] = None,
**kwargs)→ redgrease.gears.OpenGearFunction[redgrease.typing.InputRecord]

Instance-local ForEach operation performs one-to-the-same (1=1) mapping.

Parameters

• op (redgrease.typing.Processor) – Function to run on each of the input
records. The function must take one argument as input (input record) and should not
return anything.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the ForEach operation.

Returns A new “open” gear function with a ForEach operation as last step.

Return type OpenGearFunction

filter(op: Optional[Callable[[InputRecord], bool]] = None, requirements: Optional[Iterable[str]]
= None, **kwargs)→ redgrease.gears.OpenGearFunction[redgrease.typing.InputRecord]

Instance-local Filter operation performs one-to-zero-or-one (1:bool) filtering of records.

Parameters

• op (redgrease.typing.Filterer, optional) – Function to apply on the input
records, to decide which ones to keep. The function must take one argument as input
(input record) and return a bool. The input records evaluated to True will be kept as
output records. Defaults to the ‘identity-function’, i.e. records are filtered based on
their own trueness or falseness.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Filter operation.

72 Chapter 6. GearFunction

redgrease

Returns A new “open” gear function with a Filter operation as last step.

Return type OpenGearFunction

accumulate(op: Optional[Callable[[T, InputRecord], T]] = None, requirements: Op-
tional[Iterable[str]] = None, **kwargs)→ redgrease.gears.OpenGearFunction[T]

Instance-local Accumulate operation performs many-to-one mapping (N:1) of records.

Parameters

• op (redgrease.typing.Accumulator, optional) – Function to to apply on
the input records. The function must take two arguments as input:

– An accumulator value, and

– The input record.

It should aggregate the input record into the accumulator variable, which stores the
state between the function’s invocations. The function must return the accumulator’s
updated value. Defaults to a list accumulator, I.e. the output will be a list of all inputs.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Accumulate operation.

Returns A new “open” gear function with Accumulate operation as last step.

Return type OpenGearFunction

localgroupby(extractor: Optional[Callable[[InputRecord], Key]] = None, re-
ducer: Optional[Callable[[Key, T, InputRecord], T]] = None, re-
quirements: Optional[Iterable[str]] = None, **kwargs) → red-
grease.gears.OpenGearFunction[Dict[redgrease.typing.Key, T]]

Instance-local LocalGroupBy operation performs many-to-less mapping (N:M) of records.

Parameters

• extractor (redgrease.typing.Extractor, optional) – Function to apply
on the input records, to extact the grouping key. The function must take one argument
as input (input record) and return a string (key). The groups are defined by the value
of the key. Defaults to the hash of the input.

• reducer (redgrease.typing.Reducer, optional) – Function to apply on the
records of each group, to reduce to a single value (per group). The function must
take (a) a key, (b) an input record and (c) a variable that’s called an accumulator.
It performs similarly to the accumulator callback, with the difference being that it
maintains an accumulator per reduced key / group. Defaults to a list accumulator, I.e.
the output will be a list of all inputs, for each group.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the LocalGroupBy operation.

Returns A new “open” gear function with a LocalGroupBy operation as last step.

Return type OpenGearFunction

limit(length: int, start: int = 0, **kwargs)→ redgrease.gears.OpenGearFunction[redgrease.typing.InputRecord]
Instance-local Limit operation limits the number of records.

Parameters

• length (int) – The maximum number of records.

6.1. Open GearFunction 73

redgrease

• start (int, optional) – The index of the first input record. Defaults to 0.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Limit operation.

Returns A new “open” gear function with a Limit operation as last step.

Return type OpenGearFunction

collect(**kwargs)→ redgrease.gears.OpenGearFunction[redgrease.typing.InputRecord]
Cluster-global Collect operation collects the result records.

Parameters **kwargs – Additional parameters to the Collect operation.

Returns A new “open” gear function with a Collect operation as last step.

Return type OpenGearFunction

repartition(extractor: Callable[[InputRecord], Hashable], require-
ments: Optional[Iterable[str]] = None, **kwargs) → red-
grease.gears.OpenGearFunction[redgrease.typing.InputRecord]

Cluster-global Repartition operation repartitions the records by shuffling them between shards.

Parameters

• extractor (Extractor) – Function that takes a record and calculates a key that
is used to determine the hash slot, and consequently the shard, that the record should
migrate to to. The function must take one argument as input (input record) and return
a string (key). The hash slot, and consequently the destination shard, is determined
by the value of the key.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Repartition operation.

Returns A new “open” gear function with a Repartition operation as last step.

Return type OpenGearFunction

aggregate(zero: Optional[T] = None, seqOp: Optional[Callable[[T, InputRecord], T]] = None,
combOp: Optional[Callable[[T, T], T]] = None, requirements: Optional[Iterable[str]]
= None, **kwargs)→ redgrease.gears.OpenGearFunction[T]

Distributed Aggregate operation perform an aggregation on local data then a global aggregation on the
local aggregations.

Parameters

• zero (Any, optional) – The initial / zero value of the accumulator variable.
Defaults to an empty list.

• seqOp (redgrease.typing.Accumulator, optional) – A function to be ap-
plied on each of the input records, locally per shard. It must take two parameters: -
an accumulator value, from previous calls - an input record The function aggregates
the input into the accumulator variable, which stores the state between the function’s
invocations. The function must return the accumulator’s updated value. Defaults to
addition, if ‘zero’ is a number and to a list accumulator if ‘zero’ is a list.

• combOp (redgrease.typing.Accumulator, optional) – A function to be ap-
plied on each of the aggregated results of the local aggregation (i.e. the output of
seqOp). It must take two parameters: - an accumulator value, from previous calls
- an input record The function aggregates the input into the accumulator variable,

74 Chapter 6. GearFunction

redgrease

which stores the state between the function’s invocations. The function must return
the accumulator’s updated value. Defaults to re-use the seqOp function.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the ref:op_aggregate operation.

Returns A new “open” gear function with a ref:op_aggregate operation as last step.

Return type OpenGearFunction

aggregateby(extractor: Optional[Callable[[InputRecord], Key]] = None, zero: Optional[T] =
None, seqOp: Optional[Callable[[Key, T, InputRecord], T]] = None, combOp: Op-
tional[Callable[[Key, T, T], T]] = None, requirements: Optional[Iterable[str]] = None,
**kwargs)→ redgrease.gears.OpenGearFunction[Dict[redgrease.typing.Key, T]]

Distributed AggregateBy operation, behaves like aggregate, but separated on each key, extracted using the
extractor.

Parameters

• extractor (redgrease.typing.Extractor, optional) – Function to apply
on the input records, to extact the grouping key. The function must take one argument
as input (input record) and return a string (key). The groups are defined by the value
of the key. Defaults to the hash of the input.

• zero (Any, optional) – The initial / zero value of the accumulator variable.
Defaults to an empty list.

• seqOp (redgrease.typing.Accumulator, optional) – A function to be ap-
plied on each of the input records, locally per shard and group. It must take two
parameters: - an accumulator value, from previous calls - an input record The func-
tion aggregates the input into the accumulator variable, which stores the state between
the function’s invocations. The function must return the accumulator’s updated value.
Defaults to a list reducer.

• combOp (redgrease.typing.Accumulator) – A function to be applied on
each of the aggregated results of the local aggregation (i.e. the output of seqOp).
It must take two parameters: - an accumulator value, from previous calls - an input
record The function aggregates the input into the accumulator variable, which stores
the state between the function’s invocations. The function must return the accumula-
tor’s updated value. Defaults to re-use the seqOp function.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the AggregateBy operation.

Returns A new “open” gear function with a AggregateBy operation as last step.

Return type OpenGearFunction

groupby(extractor: Optional[Callable[[InputRecord], Key]] = None, reducer: Op-
tional[Callable[[Key, T, InputRecord], T]] = None, requirements: Optional[Iterable[str]] =
None, **kwargs)→ redgrease.gears.OpenGearFunction[Dict[redgrease.typing.Key, T]]

Cluster-local GroupBy operation performing a many-to-less (N:M) grouping of records.

Parameters

• extractor (redgrease.typing.Extractor, optional) – Function to apply
on the input records, to extact the grouping key. The function must take one argument
as input (input record) and return a string (key). The groups are defined by the value
of the key. Defaults to the hash of the input.

6.1. Open GearFunction 75

redgrease

• reducer (redgrease.typing.Reducer, optional) – Function to apply on the
records of each group, to reduce to a single value (per group). The function must
take (a) a key, (b) an input record and (c) a variable that’s called an accumulator.
It performs similarly to the accumulator callback, with the difference being that it
maintains an accumulator per reduced key / group. Defaults to a list reducer.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the GroupBy operation.

Returns A new “open” gear function with a GroupBy operation as last step.

Return type OpenGearFunction

batchgroupby(extractor: Optional[Callable[[InputRecord], Key]] = None, re-
ducer: Optional[Callable[[Key, Iterable[T]], InputRecord]] = None,
requirements: Optional[Iterable[str]] = None, **kwargs) → red-
grease.gears.OpenGearFunction[Dict[redgrease.typing.Key, T]]

Cluster-local GroupBy operation, performing a many-to-less (N:M) grouping of records.

Note: Using this operation may cause a substantial increase in memory usage during
runtime. Consider using the GroupBy

Parameters

• extractor (redgrease.typing.Extractor, optional) – Function to apply
on the input records, to extact the grouping key. The function must take one argument
as input (input record) and return a string (key). The groups are defined by the value
of the key. Defaults to the hash of the input.

• reducer (redgrease.typing.Reducer) – Function to apply on the records
of each group, to reduce to a single value (per group). The function must take (a) a
key, (b) an input record and (c) a variable that’s called an accumulator. It performs
similarly to the accumulator callback, with the difference being that it maintains an
accumulator per reduced key / group. Default is the length (len) of the input.

• **kwargs – Additional parameters to the GroupBy operation.

Returns A new “open” gear function with a GroupBy operation as last step.

Return type OpenGearFunction

sort(reverse: bool = True, requirements: Optional[Iterable[str]] = None, **kwargs) → red-
grease.gears.OpenGearFunction[redgrease.typing.InputRecord]

Sort the records

Parameters

• reverse (bool, optional) – Sort in descending order (higher to lower). De-
faults to True.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Sort operation.

Returns A new “open” gear function with a Sort operation as last step.

Return type OpenGearFunction

distinct(**kwargs)→ redgrease.gears.OpenGearFunction[redgrease.typing.InputRecord]
Keep only the Distinct values in the data.

76 Chapter 6. GearFunction

redgrease

Parameters **kwargs – Additional parameters to the Distinct operation.

Returns A new “open” gear function with a Distinct operation as last step.

Return type OpenGearFunction

count(**kwargs)→ redgrease.gears.OpenGearFunction[int]
Count the number of records in the execution.

Parameters **kwargs – Additional parameters to the Count operation.

Returns A new “open” gear function with a Count operation as last step.

Return type OpenGearFunction

countby(extractor: Callable[[InputRecord], Hashable] = <function OpenGearFunc-
tion.<lambda>>, requirements: Optional[Iterable[str]] = None, **kwargs) → red-
grease.gears.OpenGearFunction[Dict[Hashable, int]]

Distributed CountBy operation counting the records grouped by key.

Parameters

• extractor (redgrease.typing.Extractor) – Function to apply on the in-
put records, to extact the grouping key. The function must take one argument as input
(input record) and return a string (key). The groups are defined by the value of the
key. Defaults to lambda x: str(x).

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the CountBy operation.

Returns A new “open” gear function with a CountBy operation as last step.

Return type OpenGearFunction

avg(extractor: Callable[[InputRecord], float] = <function OpenGearFunction.<lambda>>, require-
ments: Optional[Iterable[str]] = None, **kwargs)→ redgrease.gears.OpenGearFunction[float]
Distributed Avg operation, calculating arithmetic average of the records.

Parameters

• extractor (redgrease.typing.Extractor) – Function to apply on the in-
put records, to extact the grouping key. The function must take one argument as input
(input record) and return a string (key). The groups are defined by the value of the
key. Defaults to lambda x: float(x).

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

• **kwargs – Additional parameters to the Avg operation.

Returns A new “open” gear function with an Avg operation as last step.

Return type OpenGearFunction

6.1. Open GearFunction 77

redgrease

6.2 Closed GearFunction

class redgrease.gears.ClosedGearFunction
Closed Gear functions are GearsFunctions that have been “closed” with a Run action or a Register action.

Closed Gear functions cannot add more operations, but can be executed in RedisGears.

on(gears_server, unblocking: bool = False, requirements: Optional[Iterable[str]] = None, replace:
Optional[bool] = None, **kwargs)

Execute the function on a RedisGears. This is equivalent to passing the function to Gears.pyexecute

Parameters

• gears_server ([type]) – Redis client / connection object.

• unblocking (bool, optional) – Execute function unblocking, i.e. asyn-
chronous. Defaults to False.

• requirements (Iterable[str], optional) – Additional requirements /
dependency Python packages. Defaults to None.

Returns The result of the function, just as Gears.pyexecute

Return type redgrease.data.ExecutionResult

6.2.1 GearsBuilder

If you are familiar with RedisGears from before, then the runtime.Gearsbuilder should be very familiar. In
fact the RedGrease version is designed to be backwards compatible with the Context Builder of RedisGears, with the
same name.

The the GearsBuilder is technically a part of on the Builtin Runtime Functions and is exposed both through
redgrease.runtime.GearsBuilder as well as redgrease.GearsBuilder.

Check out the Builtin Runtime Functions and specifically the section on the GearsBuilder for more details.

6.2.2 Readers

6.3 KeysReader

class redgrease.reader.KeysReader(default_key_pattern: str = '*', desc: Optional[str] = None,
requirements: Optional[Iterable[str]] = None)

KeysReader is a convenience class for GearsBuilder(“KeysReader”, . . .)

Instantiate a KeysReader “open” Gear function.

Parameters

• default_key_pattern (str, optional) – Default Redis key pattern for the
keys (and its values, type) to read. Defaults to “*”.

• desc (str, optional) – An optional description. Defaults to None.

• requirements (Iterable[str], optional) – Package dependencies for the
gear train. Defaults to None.

values(type=Ellipsis, event=Ellipsis)→ redgrease.gears.OpenGearFunction
Filter out and select the values of the records only.

78 Chapter 6. GearFunction

https://oss.redislabs.com/redisgears/1.0/functions.html#context-builder

redgrease

Parameters

• type (Union[str, Container[str]], optional) – A single string, or a
container of several strings, representing the Redis type(s) of keys to select. Valid
values include: “string”, “hash”, “list”, “set”, “zset”, “stream” or “module”. Defaults
to . . . (Ellipsis), meaning any type.

• event (Union[str, Container[str]], optional) – A single string, or
a container of several strings, representing the Redis command or event `that . De-
faults to . . . (Ellipsis), meaning any event.

Returns A new “open” gear function generating the matching values.

Return type OpenGearFunction

keys(type=Ellipsis, event=Ellipsis)→ redgrease.gears.OpenGearFunction[str]
Filter out and select the keys of the records only.

Parameters

• type (Union[str, Container[str]], optional) – A single string, or a
container of several strings, representing the Redis type(s) of keys to select. Valid
values include: “string”, “hash”, “list”, “set”, “zset”, “stream” or “module”. Defaults
to . . . (Ellipsis), meaning any type.

• event (Union[str, Container[str]], optional) – A single string, or
a container of several strings, representing the Redis command or event `that . De-
faults to . . . (Ellipsis), meaning any event.

Returns A new “open” gear function generating the matching keys.

Return type OpenGearFunction[str]

records(type=Ellipsis, event=Ellipsis)→ redgrease.gears.OpenGearFunction[redgrease.utils.Record]
Filter out and map the records to redgrease.utils.Record objects.

This provides the fields key, value, type and event as typed attributes on an object, instead of items in a
dict, making it a little bit more pleasant to work with.

Parameters

• type (Union[str, Container[str]], optional) – A single string, or a
container of several strings, representing the Redis type(s) of keys to select. Valid
values include: “string”, “hash”, “list”, “set”, “zset”, “stream” or “module”. Defaults
to . . . (Ellipsis), meaning any type.

• event (Union[str, Container[str]], optional) – A single string, or
a container of several strings, representing the Redis command or event `that. Defaults
to . . . (Ellipsis), meaning any event.

Returns A new “open” gear function generating the matching Record values.

Return type OpenGearFunction[redgrease.utils.Record]

6.3. KeysReader 79

redgrease

6.4 KeysOnlyReader

class redgrease.reader.KeysOnlyReader(default_key_pattern: str = '*', desc: Optional[str] =
None, requirements: Optional[Iterable[str]] = None)

KeysOnlyReader is a convenience class for GearsBuilder(“KeysOnlyReader”, . . .)

Instantiate a KeysOnlyReader “open” Gear function.

Parameters

• default_key_pattern (str, optional) – Default Redis keys pattern for the
keys to read. Defaults to “*”.

• desc (str, optional) – An optional description. Defaults to None.

• requirements (Iterable[str], optional) – Package dependencies for the
gear train. Defaults to None.

6.5 StreamReader

class redgrease.reader.StreamReader(default_key_pattern: str = '*', desc: Optional[str] =
None, requirements: Optional[Iterable[str]] = None)

StreamReader is a convenience class for GearsBuilder(“StreamReader”, . . .)

Instantiate a StreamReader “open” Gear function.

Parameters

• default_key_pattern (str, optional) – Default Redis keys pattern for the
redis stream(s) to read. Defaults to “*”.

• desc (str, optional) – An optional description. Defaults to None.

• requirements (Iterable[str], optional) – Package dependencies for the
gear train. Defaults to None.

values()→ redgrease.gears.OpenGearFunction[Dict]
Select the values of the stream only.

Returns A new “open” gear function generating values.

Return type OpenGearFunction

keys()→ redgrease.gears.OpenGearFunction[str]
Select the keys, i.e. stream names, only.

Returns A new “open” gear function generating names.

Return type OpenGearFunction[str]

records()→ redgrease.gears.OpenGearFunction[redgrease.utils.StreamRecord]
Filter out and map the records to redgrease.utils.StreamRecord objects.

This provides the fields key, id and value as typed attributes on an object, instead of items in a dict, making
it a little bit more pleasant to work with.

Returns A new “open” gear function generating the matching Record values.

Return type OpenGearFunction[redgrease.utils.Record]

80 Chapter 6. GearFunction

redgrease

6.6 PythonReader

class redgrease.reader.PythonReader(desc: Optional[str] = None, requirements: Op-
tional[Iterable[str]] = None)

PythonReader is a convenience class for GearsBuilder(“PythonReader”, . . .)

Instantiate a PythonReader “open” Gear function.

Parameters

• desc (str, optional) – An optional description. Defaults to None.

• requirements (Iterable[str], optional) – Package dependencies for the
gear train. Defaults to None.

6.7 ShardsIDReader

class redgrease.reader.ShardsIDReader(desc: Optional[str] = None, requirements: Op-
tional[Iterable[str]] = None)

ShardsIDReader is a convenience class for GearsBuilder(“ShardsIDReader”, . . .)

Instantiate a ShardsIDReader “open” Gear function.

Parameters

• desc (str, optional) – An optional description. Defaults to None.

• requirements (Iterable[str], optional) – Package dependencies for the
gear train. Defaults to None.

6.8 CommandReader

class redgrease.reader.CommandReader(desc: Optional[str] = None, requirements: Op-
tional[Iterable[str]] = None)

CommandReader is a convenience class for GearsBuilder(“CommandReader”, . . .)

Instantiate a CommandReader “open” Gear function.

Parameters

• desc (str, optional) – An optional description. Defaults to None.

• requirements (Iterable[str], optional) – Package dependencies for the
gear train. Defaults to None.

args(max_count: Optional[int] = None)→ redgrease.gears.OpenGearFunction
Ignore the trigger name and take only the arguments following the trigger.

Parameters max_count (int, optional) – Maximum number of args to take. Any
additional args will be truncated. Defaults to None.

Returns A new “open” gear function only generating the trigger arguments.

Return type redgrease.gears.OpenGearFunction

apply(fun: Callable[[. . .], OutputRecord], requirements: Optional[Iterable[str]] = None, **kwargs)
→ redgrease.gears.OpenGearFunction[OutputRecord]

Apply a function to the trigger arguments.

6.6. PythonReader 81

redgrease

Parameters fun (Callable[. . . , redgrease.typing.OutputRecord]) – The function
to call with the trigger arguments.

Returns A new “open” gear function generating the results of the function.

Return type redgrease.gears.OpenGearFunction[redgrease.typing.
OutputRecord]

Courtesy of : Pte. Ltd.

82 Chapter 6. GearFunction

https://www.lyngon.com

CHAPTER

SEVEN

OPERATIONS

This section goes through the various operations available to Open GearFunction in more detail.

7.1 Map

class redgrease.gears.Map(op: Callable[[InputRecord], OutputRecord], **kwargs)
The local Map operation performs the one-to-one (1:1) mapping of records.

It requires one mapper function.

op
The mapper function to map on all input records.

Type redgrease.typing.Mapper

Instantiate a Map operation.

Parameters op (redgrease.typing.Mapper) – Function to map on the input records. The
function must take one argument as input (input record) and return something as an output
(output record).

7.2 FlatMap

class redgrease.gears.FlatMap(op: Callable[[InputRecord], Iterable[OutputRecord]],
**kwargs)

The local FlatMap operation performs one-to-many (1:N) mapping of records.

It requires one expander function that maps a single input record to potentially multiple output records.

FlatMap is nearly identical to the Map operation in purpose and use. Unlike regular mapping, however, when
FlatMap returns a sequence / iterator, each element in the sequence is turned into a separate output record.

op
The mapper function to map on all input records.

Type redgrease.typing.Expander

Instantiate a FlatMap operation.

Parameters op (redgrease.typing.Expander) – Function to map on the input records.
The function must take one argument as input (input record) and return an iterable as an
output (output records).

83

redgrease

7.3 ForEach

class redgrease.gears.ForEach(op: Callable[[InputRecord], None], **kwargs)
The local ForEach operation performs one-to-the-same (1=1) mapping.

It requires one processor function to perform some work that’s related to the input record.

Its output record is a copy of the input, which means anything the callback returns is discarded.

Parameters op (redgrease.typing.Processor) – Function to run on the input records.

Instantiate a ForEach operation.

Parameters op (redgrease.typing.Processor) – Function to run on each of the input
records. The function must take one argument as input (input record) and should not return
anything.

7.4 Filter

class redgrease.gears.Filter(op: Callable[[InputRecord], bool], **kwargs)
The local Filter operation performs one-to-zero-or-one (1:(0|1)) filtering of records.

It requires a filterer function.

An input record that yields a falsehood will be discarded and only truthful ones will be output.

Parameters op (redgrease.typing.Filterer) – Predicate function to run on the input
records.

Instantiate a Filter operation.

Parameters op (redgrease.typing.Filterer) – Function to apply on the input records,
to decide which ones to keep. The function must take one argument as input (input record)
and return a bool. The input records evaluated to True will be kept as output records.

7.5 Accumulate

class redgrease.gears.Accumulate(op: Callable[[T, InputRecord], T], **kwargs)
The local Accumulate operation performs many-to-one mapping (N:1) of records.

It requires one accumulator function.

Once input records are exhausted its output is a single record consisting of the accumulator’s value.

Parameters op (redgrease.typing.Accumulator) – Accumulation function to run on
the input records.

Instantiate an Accumulate operation.

Parameters op (redgrease.typing.Accumulator) – Function to to apply on the input
records. The function must take two arguments as input:

• the input record, and

• An accumulator value.

It should aggregate the input record into the accumulator variable, which stores the state be-
tween the function’s invocations. The function must return the accumulator’s updated value.

84 Chapter 7. Operations

redgrease

7.6 LocalGroupBy

class redgrease.gears.LocalGroupBy(extractor: Callable[[InputRecord], Key], reducer:
Callable[[Key, T, InputRecord], T], **kwargs)

The local LocalGroupBy operation performs many-to-less mapping (N:M) of records.

The operation requires two functions, an extractor and a reducer.

The output records consist of the grouping key and its respective reduce value.

extractor
Function that extracts the key to group by from input records.

Type redgrease.typing.Extractor

reducer
Function that reduces the records in each group to an output record.

Type redgrease.typing.Reducer

Instantiate a LocalGroupBy operator.

Parameters

• extractor (redgrease.typing.Extractor) – Function to apply on the input
records, to extact the grouping key. The function must take one argument as input (input
record) and return a string (key). The groups are defined by the value of the key.

• reducer (redgrease.typing.Reducer) – Function to apply on the records of
each group, to reduce to a single value (per group). The function must take (a) a key, (b)
an input record and (c) a variable that’s called an accumulator. It performs similarly to
the accumulator callback, with the difference being that it maintains an accumulator per
reduced key / group.

7.7 Limit

class redgrease.gears.Limit(length: int, start: int = 0, **kwargs)
The local Limit operation limits the number of records.

It accepts two numeric arguments: a starting position in the input records “array” and a maximal number of
output records.

start
Starting index (0-based) of the input record to start from

Type int

length
The maximum number of records to let through.

Type int

Instantiate a Limit operation

Parameters

• length (int) – The maximum number of records.

• start (int, optional) – The index of the first input record. Defaults to 0.

7.6. LocalGroupBy 85

redgrease

7.8 Collect

class redgrease.gears.Collect(**kwargs)
The global Collect operation collects the result records from all of the shards to the originating one.

Instantiate a Collect operation.

7.9 Repartition

class redgrease.gears.Repartition(extractor: Callable[[InputRecord], Key], **kwargs)

The global Repartition operation repartitions the records by them shuffling between shards.

It accepts a single key extractor function. The extracted key is used for computing the record’s new placement
in the cluster (i.e. hash slot). The operation then moves the record from its original shard to the new one.

Attributes:

extractor (redgrease.typing.Extractor): A function deciding the destination shard of an in-
put record.

Instantiate a Repartition operation

Parameters extractor (redgrease.typing.Extractor) – Function that takes a record
and calculates a key that is used to determine the hash slot, and consequently the shard, that
the record should migrate to to. The function must take one argument as input (input record)
and return a string (key). The hash slot, and consequently the destination shard, is determined
by hthe value of the key.

7.10 Aggregate

class redgrease.gears.Aggregate(zero: Any, seqOp: Callable[[T, InputRecord], T], combOp:
Callable[[T, InputRecord], T], **kwargs)

The Aggregate operation performs many-to-one mapping (N:1) of records.

Aggregate provides an alternative to the local accumulate operation as it takes the partitioning of data into
consideration. Furthermore, because records are aggregated locally before collection, its performance is usually
superior.

It requires a zero value and two accumulator functions for computing the local and global aggregates.

The operation is made of these steps:

1. The local accumulator is executed locally and initialized with the zero value.

2. A global collect moves all records to the originating engine.

3. The global accumulator is executed locally by the originating engine.

Its output is a single record consisting of the accumulator’s global value.

zero
The initial / zero value for the accumulator variable.

Type Any

seqOp
A local accumulator function, applied locally on each shard.

86 Chapter 7. Operations

redgrease

Type redgrease.typing.Accumulator

combOp
A global accumulator function, applied on the results of the local accumulations.

Type redgrease.typing.Accumulator

Instantiates an Aggregate operation.

Parameters

• zero (Any) – The initial / zero value of the accumulator variable.

• seqOp (redgrease.typing.Accumulator) – A function to be applied on each
of the input records, locally per shard. It must take two parameters: - an accumulator
value, from previous calls - an input record The function aggregates the input into the
accumulator variable, which stores the state between the function’s invocations. The
function must return the accumulator’s updated value.

• combOp (redgrease.typing.Accumulator) – A function to be applied on each
of the aggregated results of the local aggregation (i.e. the output of seqOp). It must take
two parameters: - an accumulator value, from previous calls - an input record The func-
tion aggregates the input into the accumulator variable, which stores the state between
the function’s invocations. The function must return the accumulator’s updated value.

7.11 AggregateBy

class redgrease.gears.AggregateBy(extractor: Callable[[InputRecord], Key], zero: Any,
seqOp: Callable[[Key, T, InputRecord], T], combOp:
Callable[[Key, T, InputRecord], T], **kwargs)

AggregateBy operation performs many-to-less mapping (N:M) of records.

It is similar to the Aggregate operation but aggregates per key. It requires a an extractor callback, a zero value
and two reducers callbacks for computing the local and global aggregates.

The operation is made of these steps:

1. Extraction of the groups using extractor.

2. The local reducer is executed locally and initialized with the zero value.

3. A global repartition operation that uses the extractor.

4. The global reducer is executed on each shard once it is repartitioned with its relevant keys.

Output list of records, one for each key. The output records consist of the grouping key and its respective
reducer’s value.

extractor
Function that extracts the key to group by from input records.

Type redgrease.typing.Extractor

zero
The initial / zero value for the accumulator variable.

Type Any

seqOp
A local accumulator function, applied locally on each shard.

Type redgrease.typing.Accumulator

7.11. AggregateBy 87

redgrease

combOp
A global accumulator function, applied on the results of the local accumulations.

Type redgrease.typing.Accumulator

Instantiate an AggregateBy operation.

Parameters

• extractor (redgrease.typing.Extractor) – Function to apply on the input
records, to extact the grouping key. The function must take one argument as input (input
record) and return a string (key). The groups are defined by the value of the key.

• zero (Any) – The initial / zero value of the accumulator variable.

• seqOp (redgrease.typing.Accumulator) – A function to be applied on each
of the input records, locally per shard and group. It must take two parameters: - an
accumulator value, from previous calls - an input record The function aggregates the input
into the accumulator variable, which stores the state between the function’s invocations.
The function must return the accumulator’s updated value.

• combOp (redgrease.typing.Accumulator) – A function to be applied on each
of the aggregated results of the local aggregation (i.e. the output of seqOp). It must take
two parameters: - an accumulator value, from previous calls - an input record The func-
tion aggregates the input into the accumulator variable, which stores the state between
the function’s invocations. The function must return the accumulator’s updated value.

7.12 GroupBy

class redgrease.gears.GroupBy(extractor: Callable[[InputRecord], Key], reducer: Callable[[Key,
T, InputRecord], T], **kwargs)

GroupBy * operation performs a many-to-less (N:M) grouping of records. It is similar to AggregateBy but uses
only a global reducer. It can be used in cases where locally reducing the data isn’t possible.

The operation requires two functions; an extractor a reducer.

The operation is made of these steps:

1. A global repartition operation that uses the extractor.
2. The reducer is locally invoked.

Output is a locally-reduced list of records, one for each key. The output records consist of the grouping key and
its respective accumulator’s value.

extractor
Function that extracts the key to group by from input records.

Type redgrease.typing.Extractor

reducer
Function that reduces the records of each group to a value

Type redgrease.typing.Reducer

Instantiate a GroupBy operation.

Parameters

• extractor (redgrease.typing.Extractor) – Function to apply on the input
records, to extact the grouping key. The function must take one argument as input (input
record) and return a string (key). The groups are defined by the value of the key.

88 Chapter 7. Operations

redgrease

• reducer (redgrease.typing.Reducer) – Function to apply on the records of
each group, to reduce to a single value (per group). The function must take (a) a key, (b)
an input record and (c) a variable that’s called an accumulator. It performs similarly to
the accumulator callback, with the difference being that it maintains an accumulator per
reduced key / group.

7.13 BatchGroupBy

class redgrease.gears.BatchGroupBy(extractor: Callable[[InputRecord], Key], reducer:
Callable[[Key, Iterable[InputRecord]], OutputRecord],
**kwargs)

BatchGroupBy operation performs a many-to-less (N:M) grouping of records.

Instead of using BatchGroupBy, prefer using the GroupBy operation as it is more efficient and
performant. Only use BatchGroupBy when the reducer’s logic requires the full list of records for
each input key.

The operation requires two functions; an extractor a batch reducer.

The operation is made of these steps:

1. A global repartition operation that uses the extractor
2. A local localgroupby operation that uses the batch reducer

Once finished, the operation locally outputs a record for each key and its respective accumulator value.

Using this operation may cause a substantial increase in memory usage during runtime.

extractor
Function that extracts the key to group by from input records.

Type redgrease.typing.Extractor

reducer
Function that reduces the records of each group to a value

Type redgrease.typing.Reducer

Instantiate a BatchGroupBy operation.

Parameters

• extractor (redgrease.typing.Extractor) – Function to apply on the input
records, to extact the grouping key. The function must take one argument as input (input
record) and return a string (key). The groups are defined by the value of the key.

• reducer (redgrease.typing.Reducer) – Function to apply on the records of
each group, to reduce to a single value (per group). The function must take (a) a key, (b)
an input record and (c) a variable that’s called an accumulator. It performs similarly to
the accumulator callback, with the difference being that it maintains an accumulator per
reduced key / group.

7.13. BatchGroupBy 89

redgrease

7.14 Sort

class redgrease.gears.Sort(reverse: bool = True, **kwargs)
Sort operation sorts the records.

It allows to control the sort order.

The operation is made of the following steps:

1. A global aggregate operation collects and combines all records.
2. A local sort is performed on the list.
3. The list is flatmapped to records.

Using this operation may cause an increase in memory usage during runtime due to the list being
copied during the sorting operation.

reverse
Defines if the sorting order is descending (True) or ascending (False).

Type bool

Instantiate a Sort operation.

Parameters reverse (bool, optional) – Sort in descending order (higher to lower). De-
faults to True.

7.15 Distinct

class redgrease.gears.Distinct(**kwargs)
The Distinct operation returns distinct records.

It requires no arguments.

The operation is made of the following steps:

1. A aggregate operation locally reduces the records to sets that are then
collected and unionized globally.

2. A local flatmap operation turns the set into records.

Instantiate a Distinct operation.

7.16 Count

class redgrease.gears.Count(**kwargs)
The Count operation counts the number of input records.

It requires no arguments.

The operation is made of an aggregate operation that uses local counting and global summing accumulators.

Instantiate a Count operation.

90 Chapter 7. Operations

redgrease

7.17 CountBy

class redgrease.gears.CountBy(extractor: Callable[[InputRecord], Key], **kwargs)
The CountBy operation counts the records grouped by key.

It requires a single extractor function.

The operation is made of an aggregateby operation that uses local counting and global summing accumulators.

extractor
Function that extracts the key to group by from input records.

Type redgrease.typing.Extractor

Instantiate a CountBy operation.

Parameters extractor (redgrease.typing.Extractor) – Function to apply on the in-
put records, to extact the grouping key. The function must take one argument as input (input
record) and return a string (key). The groups are defined by the value of the key.

7.18 Avg

class redgrease.gears.Avg(extractor: Callable[[InputRecord], Key], **kwargs)
The Avg operation returns the arithmetic average of records.

It has an optional value extractor function.

The operation is made of the following steps:

1. A aggregate operation locally reduces the records to tuples of sum and count
that are globally combined.

2. A local map operation calculates the average from the global tuple.

extractor
Function that extracts the key to group by from input records.

Type redgrease.typing.Extractor

Instantiate an Avg operation.

Parameters extractor (redgrease.typing.Extractor) – Function to apply on the in-
put records, to extact the grouping key. The function must take one argument as input (input
record) and return a string (key). The groups are defined by the value of the key.

7.17. CountBy 91

redgrease

92 Chapter 7. Operations

CHAPTER

EIGHT

ACTIONS

Actions closes open GearFunctions, and indicates the running mode of the function, as follows:

Action Execution Mode
Run “batch-mode”
Register “event-mode”

8.1 Run

class redgrease.gears.Run(arg: Optional[str] = None, convertToStr: bool = True, collect: bool =
True, **kwargs)

Run action

The Run action runs a Gear function as a batch. The function is executed once and exits once the data is
exhausted by its reader.

The Run action can only be the last operation of any GearFunction, and it effectivesly ‘closes’ it to further
operations.

arg
Argument that’s passed to the reader, overriding its defaultArg. It means the following:

• A glob-like pattern for the KeysReader and KeysOnlyReader readers.

• A key name for the StreamReader reader.

• A Python generator for the PythonReader reader.

Type str, optional

convertToStr
When True, adds a map operation to the flow’s end that stringifies records.

Type bool

collect
When True, adds a collect operation to flow’s end.

Type bool

Instantiate a Run action

Parameters

• arg (Optional[str], optional) – Optional argument that’s passed to the reader,
overriding its defaultArg. It means the following:

93

redgrease

– A glob-like pattern for the KeysReader and KeysOnlyReader readers.

– A key name for the StreamReader reader.

– A Python generator for the PythonReader reader.

Defaults to None.

• convertToStr (bool, optional) – When True, adds a map operation to the
flow’s end that stringifies records. Defaults to True.

• collect (bool, optional) – When True, adds a collect operation to flow’s end.
Defaults to True.

8.2 Register

class redgrease.gears.Register(prefix: str = '*', convertToStr: bool = True, collect: bool = True,
mode: str = 'async', onRegistered: Optional[Callable[], None]]
= None, **kwargs)

Register action

The Register action registers a function as an event handler. The function is executed each time an event arrives.
Each time it is executed, the function operates on the event’s data and once done it is suspended until its future
invocations by new events.

The Register action can only be the last operation of any GearFunction, and it effectivesly ‘closes’ it to further
operations.

prefix
Key prefix pattern to match on. Not relevant for ‘CommandReader’ readers (see ‘trigger’).

Type str

convertToStr
When True, adds a map operation to the flow’s end that stringifies records.

Type bool

collect
When True, adds a collect operation to flow’s end.

Type bool

mode
The execution mode of the triggered function.

Type str

onRegistered
A function callback that’s called on each shard upon function registration.s

Type Callable

Instantiate a Register action

Parameters

• prefix (str, optional) – Key prefix pattern to match on. Not relevant for ‘Com-
mandReader’ readers (see ‘trigger’). Defaults to ‘*’.

• convertToStr (bool, optional) – When True adds a map operation to the
flow’s end that stringifies records. Defaults to True.

94 Chapter 8. Actions

redgrease

• collect (bool, optional) – When True adds a collect operation to flow’s end.
Defaults to False.

• mode (str, optional) – The execution mode of the function. Can be one of:

- ``"async"``:

Execution will be asynchronous across the entire cluster.

– "async_local":

Execution will be asynchronous and restricted to the handling shard.

– "sync":

Execution will be synchronous and local

Defaults to redgrease.TriggerMode.Async ("async")

• onRegistered (Registrator, optional) – A function callback that’s called
on each shard upon function registration. It is a good place to initialize non-serializeable
objects such as network connections. Defaults to None.

8.2. Register 95

redgrease

96 Chapter 8. Actions

CHAPTER

NINE

OPERATION CALLBACK TYPES

This section runs through the various type signatures that the function callbacks used in the operations must follow.

9.1 Registrator

redgrease.typing.Registrator
“Type definition for Registrator functions.

I.e. callback functions that may be called on each shard upon function registration. Such functions provide a
good place to initialize non-serializable objects such as network connections.

An function of Registrator type shoud take no arguments, nor return any value.

alias of Callable[[], None]

9.2 Extractor

redgrease.typing.Extractor
Type definition for Extractor functions.

Extractor functions are used in the following operations:

• LocalGroupBy

• Repartition

• AggregateBy

• GroupBy

• BatchGroupBy

• CountBy

• Avg

Extractor functions extracts or calculates the value that should be used as (grouping) key, from an input record
of the operation.

Parameters (InputRecord) - A single input-record, of the same type as the

operations’ input type.

Returns A any ‘Hashable’ value.

Return type Key

97

redgrease

Example - Count users per supervisor:

Function of "Extractor" type
Extracts the "supervisor" for a user,
If the user has no supervisor, then the user is considered its own supervisor.
def supervisor(user)

return user.get("supervisor", user["id"])

KeysReader("user:*").values().countby(supervisor).run()

alias of Callable[[InputRecord], Key]

9.3 Mapper

redgrease.typing.Mapper
Type definition for Mapper functions.

Mapper functions are used in the following operations:

• Map

Mapper functions transforms a value from the operations input to some new value.

Parameters (InputRecord) - A single input-record, of the same type as the

operations’ input type.

Returns A any value.

Return type OutputRecord

alias of Callable[[InputRecord], OutputRecord]

9.4 Expander

redgrease.typing.Expander
Type definition forExpander functions.

Expander functions are used in the following operations:

• FlatMap

Expander functions transforms a value from the operations input into several new values.

Parameters (InputRecord) - A single input-record, of the same type as the

operations’ input type.

Returns An iterable sequence of values, for example a list, each of which becomes an input to the
next operation.

Return type Iterable[OutputRecord]

alias of Callable[[InputRecord], Iterable[OutputRecord]]

98 Chapter 9. Operation Callback Types

redgrease

9.5 Processor

redgrease.typing.Processor
Type definition forProcessor functions.

Processor functions are used in the following operations:

• ForEach

Processor functions performs some side effect using a value from the operations input.

Parameters (InputRecord) - A single input-record, of the same type as the

operations’ input type.

Returns Nothing.

Return type None

alias of Callable[[InputRecord], None]

9.6 Filterer

redgrease.typing.Filterer
Type definition forFilterer functions.

Filterer functions are used in the following operations:

• Filter

Filter functions evaluates a value from the operations input to either True or False.

Parameters (InputRecord) - A single input-record, of the same type as the

operations’ input type.

Returns Either True or False.

Return type bool

alias of Callable[[InputRecord], bool]

9.7 Accumulator

redgrease.typing.Accumulator
Type definition forAccumulator functions.

Accumulator functions are used in the following operations:

• Accumulate

• Aggregate

Accumulator functions takes a variable that’s also called an accumulator, as well as an input record. It aggregates
inputs into the accumulator variable, which stores the state between the function’s invocations. The function
must return the accumulator’s updated value after each call.

Parameters

• (T) - An accumulator value.

9.5. Processor 99

redgrease

• (InputRecord) - A single input-record, of the same type as the operations’ input

type.

Returns The updated accumulator value.

Return type T

alias of Callable[[T, InputRecord], T]

9.8 Reducer

redgrease.typing.Reducer
Type definition forReducer functions.

Reducer functions are used in the following operations:

• LocalGroupBy

• AggregateBy

• GroupBy

Reducer functions receives a key, a variable that’s called an accumulator and an an input. It performs similarly
to the redgrease.typing.Accumulator callback, with the difference being that it maintains an
accumulator per reduced key.

Parameters

• (Key) - A key value for the group.

• (T) - An accumulator value.

• (InputRecord) - A single input-record, of the same type as the operations’ input

type.

Returns The updated accumulator value.

Return type T

alias of Callable[[Key, T, InputRecord], T]

9.9 BatchReducer

redgrease.typing.BatchReducer
Type definition forBatchReducer functions.

BatchReducer functions are used in the following operations:

• BatchGroupBy

BatchReducer functions receives a key and a list of input records. It performs similarly to the redgrease.
typing.Reducer callback, with the difference being that it is input with a list of records instead of a
single one. It is expected to return an accumulator value for these records

Parameters

• (Key) - A key value for the group.

100 Chapter 9. Operation Callback Types

redgrease

• (Iterable[InputRecord]) - A collection of input-record, of the same type as the

operations’ input type.

Returns A reduced output value.

Return type OutputRecord

alias of Callable[[Key, Iterable[InputRecord]], OutputRecord]

Courtesy of : Pte. Ltd.

9.9. BatchReducer 101

https://www.lyngon.com

redgrease

102 Chapter 9. Operation Callback Types

CHAPTER

TEN

SERVERSIDE REDIS COMMANDS

With the RedGrease runtime package installed on the RedGrease server, you can execute Redis commands to the
local shards using “serverside commands” instead of using redgrease.runtime.execute() inside your Gear
functions.

Serverside Redis Commands, behaves almost identical to a normal Redis client, except that you do not have to instan-
tiate it.

Inside any Gear function, you can simply invoke Redis commands just as you would in your client using redgrease.
cmd:

Example:

redgrease.cmd.set("Foo", "Bar")

Warning: Serverside Redis Commands have the following limitations:

A. Only executes commands against the local shard. This is also the case for both the redgrease.
runtime.execute() function as well as the the RedisGears default builtin execute() function too.

B. Blocking commands, such as “BRPOP” or “BLPOP” ect, are not supported. This is also the case for
both the redgrease.runtime.execute() function as well as the the RedisGears default builtin
execute() function too.

Courtesy of : Pte. Ltd.

103

https://www.lyngon.com

redgrease

104 Chapter 10. Serverside Redis Commands

CHAPTER

ELEVEN

SYNTACTIC SUGAR

Various minor things to make life easier, prettier, more concise and/or less error prone.

11.1 Command Function Decorator

The @redgrease.command decorator can be put on functions to immediately turn them into CommandReader
GearFunctions.

The decorator takes all the same parameters as the CommandReader.register(), but the trigger argument
is optional, and the name of the function is used as default.

The decorator also takes a boolean keyword argument replace which indicates what should be done if a function
with the same trigger has already been registered, as follows:

• None - Default - A redgrease.exceptions.DuplicateTriggerError error is raised.

• True - The registered function is replaced.

• False - Nothing. No error is raised, but the existing registered function remains.

The decorator also takes the keyword on, which if provided with a Redis Gears client connection, attempts to register
the function as a command reader on the server.

The GearFunction can be triggered by simply locally calling the decorated function, just as if it was a local function.
Under the hood, however, this will send the trigger and any passed arguments to the server, which in turn runs the
registered CommandReader function on the Redis shards, and then retuns the function results to the caller.

Listing 1: examples/cache_get_command.py

2

3 import redgrease
4

5 # Bind / register the function on some Redis instance.
6 r = redgrease.RedisGears()
7

8

9 # CommandReader Decorator
10 # The `command` decorator tunrs the function to a CommandReader,
11 # registerered on the Redis Gears sever if using the `on` argument
12 @redgrease.command(on=r, requirements=["requests"], replace=False)
13 def cache_get(url):
14 import requests
15

16 # Check if the url is already in the cache,
17 # And if so, simply return the cached result.

(continues on next page)

105

redgrease

(continued from previous page)

18 if redgrease.cmd.exists(url):
19 return bytes(redgrease.cmd.get(url))
20

21 # Otherwise fetch the url.
22 response = requests.get(url)
23

24 # Return nothing if request fails
25 if response.status_code != 200:
26 return bytes()
27

28 # If ok, set the cache data and return.
29 response_data = bytes(response.content)
30 redgrease.cmd.set(url, response_data)
31

32 return response_data
33

34

Note: The on argument is actually optional, but in that case the decorated function cannot be called locally as
described above.

Instead the function name becomes a “Closed” CommandReader GearFunction, which can be turned into a function
as per above again, by calling the on() method:

import redgrease

``on`` argument **not** provided => ``foo`` becomes a Closed GearFunction
@redgrease.command()
def foo(arg1, arg2):

redgrease.cmd.log(f"Pretending to do something with {arg1} and {arg2}")

r = redgrease.RedisGears()

Call ``on`` on foo with a Gears client
=> result is a local triggering function
do_foo = foo.on(r)

Call / trigger the function
do_foo("this", "that")

redgrease.command(trigger: Optional[str] = None, prefix: str = '*', collect: bool = True, mode:
str = 'async', onRegistered: Optional[Callable[], None]] = None, **kargs) →
Callable[[Callable], redgrease.gears.ClosedGearFunction]

Decorator for creation of CommandReader + Trigger GearFunctions

Parameters

• trigger (str, optional) – The trigger string Will be a the function name if not
specified (None). The special value . . . (Ellipsis) wil give the function a unique trigger.
Defaults to None

• prefix (str, optional) – Register prefix. Same as for the register operation. De-
faults to “*”.

• collect (bool, optional) – Add a collect’ operation to the end of the function.

106 Chapter 11. Syntactic Sugar

redgrease

Same as for the `register operation. Defaults to True.

• mode (str, optional) – The execution mode of the triggered function. Same as for
the register operation. Defaults to redgrease.sugar.TriggerMode.Async.

• onRegistered (redgrease.typing.Registrator, optional) – A function
callback thats called on each shard upon function registration. It is a good place to ini-
tialize non-serializeable objects such as network connections. Same as for the register
operation. Defaults to None.

Returns A ClosedGearFunction generator.

Return type Callable[[Callable], ClosedGearFunction]

11.2 Keywords

Moderately useful symbols that can be used instead of strings for various RedisGears Keywords.

11.2.1 Reader Types

ReaderType.KeysReader = 'KeysReader'
KeysReader

ReaderType.KeysOnlyReader = 'KeysOnlyReader'
KeysOnlyReader

ReaderType.StreamReader = 'StreamReader'
StreamReader

ReaderType.PythonReader = 'PythonReader'
PythonReader

ReaderType.ShardsIDReader = 'ShardsIDReader'
ShardsIDReader

ReaderType.CommandReader = 'CommandReader'
CommandReader

Example:

from redgrease import GearsBuilder, ReaderType

gb = GearsBuilder(ReaderType.KeysReader).run()

11.2.2 Trigger Modes

TriggerMode.Async = 'async'
Async

TriggerMode.AsyncLocal = 'async_local'
AsyncLocal

TriggerMode.Sync = 'sync'
Sync

Example:

11.2. Keywords 107

redgrease

from redgrease import GearsBuilder, KeysReader, TriggerMode

fun = KeysReader().register(mode=TriggerMode.AsyncLocal)

11.2.3 Key types

KeyType.String = 'string'
String

KeyType.Hash = 'hash'
Hash

KeyType.List = 'list'
List

KeyType.Set = 'set'
Set

KeyType.ZSet = 'zset'
ZSet

KeyType.Stream = 'stream'
Stream

KeyType.Module = 'module'
Module

Example:

from redgrease import KeysReader, KeyType

fun = KeysReader().register(keyTypes=[KeyType.List, KeyType.Set, KeyType.ZSet])

11.2.4 Failure Policies

FailurePolicy.Continue = 'continue'
Continue

FailurePolicy.Abort = 'abort'
Abort

FailurePolicy.Retry = 'retry'
Retry

Example:

from redgrease import StreamReader, FailurePolicy

fun = StreamReader().register(onFailedPolicy=FailurePolicy.Abort)

108 Chapter 11. Syntactic Sugar

redgrease

11.2.5 Log Levels

LogLevel.Debug = 'debug'
Debug

LogLevel.Verbose = 'verbose'
Verbose

LogLevel.Notice = 'notice'
Notice

LogLevel.Warning = 'warning'
Warning

Example:

from redgrease import KeysOnlyReader, LogLevel

fun = KeysOnlyReader().map(lambda k: log(f"Processing key: {k}", level=LogLevel.
→˓Debug).run()

Courtesy of : Pte. Ltd.

11.2. Keywords 109

https://www.lyngon.com

redgrease

110 Chapter 11. Syntactic Sugar

CHAPTER

TWELVE

COMMAND LINE TOOL

Sorry, this section is under construction!

redgrease can be invoked from the CLI:

redgrease --help
usage: redgrease [-h] [-c PATH] [--index-prefix PREFIX] [-r] [--script-pattern
→˓PATTERN] [--requirements-pattern PATTERN] [--unblocking-pattern PATTERN] [-i
→˓PATTERN] [-w [SECONDS]] [-s [SERVER]] [-p PORT] [-l LOG_CONFIG] dir_path [dir_path .
→˓..]

Scans one or more directories for Redis Gears scripts, and executes them in a Redis
→˓Gears instance or cluster. Can optionally run continuously, monitoring and re-
→˓loading scripts whenever changes are detected. Args that start with '--' (eg. --
→˓index-prefix) can also be set in a config file
(./*.conf or /etc/redgrease/conf.d/*.conf or specified via -c). Config file syntax
→˓allows: key=value, flag=true, stuff=[a,b,c] (for details, see syntax at https://goo.
→˓gl/R74nmi). If an arg is specified in more than one place, then command-line values
→˓override environment variables which override
config file values which override defaults.

positional arguments:
dir_path One or more directories containing Redis Gears scripts to

→˓watch

optional arguments:
-h, --help show this help message and exit
-c PATH, --config PATH

Config file path [env var: CONFIG_FILE]
--index-prefix PREFIX

Redis key prefix added to the index of monitored/executed
→˓script files. [env var: INDEX_PREFIX]

-r, --recursive Recursively watch subdirectories. [env var: RECURSIVE]
--script-pattern PATTERN

File name pattern (glob-style) that must be matched for
→˓scripts to be loaded. [env var: SCRIPT_PATTERN]

--requirements-pattern PATTERN
File name pattern (glob-style) that must be matched for

→˓requirement files to be loaded. [env var: REQUIREMENTS_PATTERN]
--unblocking-pattern PATTERN

Scripts with file paths that match this regular expression,
→˓will be executed with the 'UNBLOCKING' modifier, i.e. async execution. Note that
→˓the pattern is a 'search' pattern and not anchored to the start of the path string.
→˓[env var: UNBLOCKING_PATTERN]

(continues on next page)

111

redgrease

(continued from previous page)

-i PATTERN, --ignore PATTERN
Ignore files matching this pattern. [env var: IGNORE]

-w [SECONDS], --watch [SECONDS]
If set, the directories will be continuously monitored for

→˓updates/modifications to scripts and requirement files, and automatically loaded/
→˓rerun. The flag takes an optional value specifying the duration, in seconds, to
→˓wait for further updates/modifications to files,

before executing. This 'hysteresis' period is to prevent
→˓malformed scripts to be unnecessarily loaded during coding. If no value is supplied,
→˓ the duration is defaulting to 5 seconds. [env var: WATCH]

-s [SERVER], --server [SERVER]
Redis Gears host server IP or hostname. [env var: SERVER]

-p PORT, --port PORT Redis Gears host port number [env var: PORT]
-l LOG_CONFIG, --log-config LOG_CONFIG

[env var: LOG_CONFIG]

Courtesy of : Pte. Ltd.

112 Chapter 12. Command Line Tool

https://www.lyngon.com

CHAPTER

THIRTEEN

UTILS MODULE

Utility and boilerplate functions, such as parsers, value transformers etc.

class redgrease.utils.CaseInsensitiveDict(data)
Case insensitive dict implementation. Assumes string keys only. Heavily derived from redis.client
`https://github.com/andymccurdy/redis-py/blob/master/redis/client.py`_

get(k, default=None)
Return the value for key if key is in the dictionary, else default.

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] =
F[k]

redgrease.utils.as_is(value: T)→ T
Passthrough parser / identity function

Parameters value (T) – Input value

Returns The value, unmodified.

Return type T

redgrease.utils.str_if_bytes(value: T)→ Union[T, str]
Parses byte values into a string, non-byte values passthrough unchanged Slightly modified from redis.utils, as it
is not exported

Parameters value (T) – Any serialized Redis value

Returns Either a string or the input unchanged

Return type Union[T, str]

redgrease.utils.safe_str(value: Any)→ str
Parse anything to a string

Parameters value (Any) – Input value

Returns String

Return type str

redgrease.utils.safe_str_upper(value: Any)→ str
Parse anything to an uppercase string

Parameters value (Any) – Input value

Returns Parsed uppercase string

Return type str

113

redgrease

redgrease.utils.bool_ok(value: Any)→ bool
Parse redis response as bool, such that:

"Ok" => True

Anything else => False

Same name as in redis.client but slightly different implementation. Should be better for long non-Ok replies,
e.g. images, erroneously passed to it

Parameters value (Any) – Input value

Returns Parsed boolean

Return type bool

redgrease.utils.optional(constructor: Union[Type[T], Callable[[Any], T]]) →
Union[Type[Optional[T]], Callable[[Any], Optional[T]]]

Create parser that accepts None values, but otherwise behaves like the provided parser.

Parameters constructor (Constructor[T]) – constructor to apply, unless the value is
None.

redgrease.utils.safe_bool(input: Any)→ bool
Parse a bool, slightly more accepting

allowing for literal "True"/"False", integer 0 or1, as well as "Ok" and "yes"/"no" values.

Parameters input (Any) – Input value

Returns Parsed boolean

Return type bool

redgrease.utils.to_int_if_bool(value: Any)→ Union[int, Any]
Transforms any boolean into an integer As booleans are not natively supported as a separate datatype in Redis

True => 1

False => 0

Parameters value (Union[bool,Any]) – A boolean value

Returns Integer representation of the bool

Return type Union[int, Any]

redgrease.utils.to_redis_type(value: Any)→ Union[bytes, int, float]
Attempts to serialize a value to a Redis-native type. I.e. either: bytes, int or float It will serialize most primitive
types (str, bool, int, float), as well as any complex type that implements __bytes__ method

Parameters value (Any) – Value to serialize for Redis

Returns A serialized version

Return type RedisType

redgrease.utils.to_list(mapping: Optional[Dict[Key, Val]], key_transform: Callable[[Key], Any]
= <function str_if_bytes>, val_transform: Callable[[Val], Any] = <func-
tion to_redis_type>)→ List

Flattens a Dict to a list consisting of the of keys and values altertnating. This is useful generating the arguments
for Redis commands.

Parameters

• mapping (Dict[Key, Val]) – The dict to flatten.

114 Chapter 13. Utils Module

redgrease

• key_transform (Callable[[Key], Any], optional) – Transformation
function for the keys. Defaults to ‘str_if_bytes’

• val_transform (Callable[[Val], Any], optional) – Transformation
function for the values. Defaults to ‘to_redis_type’.

Returns Flattened list of the transformed keys and values

Return type List

redgrease.utils.transform(value: Any, constructor: Union[Type[T], Callable[[Any], T], Dict[Key,
Union[Type[T], Callable[[Any], T]]]], key: Optional[Key] = None)→
T

Applies a transformation to a value. The tranformation function could either be passed directly or in a dictionary
along with a key to look it up. This is mostly only useful as a helper function for constructors of composite types,
where the value may need to be transformed differently depending on the field/key.

Parameters

• value (Any) – Value to transform

• constructor (Union[Constructor[T], Dict[Any,
Constructor[T]]]) – Transformation function or a dict of transformation
functions. If a dict is used, the key argument is used to look up the transformation. If
the key is not present in the dict, but there is a ‘None’-key mapping to a functsion, this
function will be used as a default. Otherwise, the value will be returned untransformed.

• key (Key) – key to use to look up the appropriate transforpation

Returns Transformed value

Return type T

redgrease.utils.to_dict(items: Iterable, keys: Optional[Iterable] = None, key_transform:
Optional[Union[Type[Key], Callable[[Any], Key], Dict[Any,
Union[Type[Key], Callable[[Any], Key]]]]] = None, val_transform: Op-
tional[Union[Type[Val], Callable[[Any], Val], Dict[Key, Union[Type[Val],
Callable[[Any], Val]]]]] = None)→ Dict[Key, Val]

Folds an iterable of values into a dict. This is useful for parsing Redis’ list responseses into a more manageable
structure. It can be used on lists of alternating unnamed Key and values, i.e:

[key_1, value_1, key_2, value_2, ...]

eg:

to_dict(["foo", 42, 13, 37]) == {"foo": 42, 13: 37}

to_dict(["foo", 42, 13, 37], key_transform=str) == {"foo": 42, "13": 37}

to_dict(["foo", 42, 13, 37], val_transform=str) == {"foo": "42", 13: "37"}

to_dict(
["foo", 42, 13, 37],
val_transform={"foo":int, 13:float}

) == {"foo": 42, 13: 37.0}

to_dict(
["foo", 42, 13, 37],
key_transform=str,
val_transform={"foo":int, "13":float}

) == {"foo": 42, "13": 37.0}

115

redgrease

Parameters

• items (Iterable) – Iterable to “fold” into a dict

• key_transform (Union[Constructor[Key], Dict[Any,
Constructor[Key]]], optional) – Transformation function / type / con-
structor to apply to keys. It can either be a callable, which is then applied to all keys.
Altertnatively, it can be a mapping from ‘raw’ key to a specific transform for that key
Defaults to None (No key transformation).

• val_transform (Union[Constructor[Val], Dict[Key,
Constructor[Val]]], optional) – Transformation function / type / con-
structor to apply to values. It can either be a callable, which is then applied to all values.
Altertnatively, it can be a mapping from (transformed) key to a specific transform for the
value of that key Defaults to None (No value transformation).

Returns Folded dictionary

Return type Dict[Key, Val]

redgrease.utils.to_kwargs(items: Iterable)→ Dict[str, Any]
Folds an iterable of values into a ‘kwargs-compatible’ dict. This is useful for constructing objects from Redis’
list responseses, by means of an intermediate kwargs dict that can be passed to for example a constructor. It
behaves exactly as ‘to_dict’ but enforces keys to be parsed to strings.

• Alternating unnamed Key and values, i.e:: [key_1, value_1, key_2, value_2, . . .]

eg:

• input: ["foo", 42, 13, 37]

• output: {"foo": 42, "13": 37}

Parameters items (Iterable) – Iterable to “fold” into a dict

Returns Folded dictionary

Return type Dict[str, Any]

redgrease.utils.list_parser(item_parser: Union[Type[T], Callable[[Any], T]]) →
Callable[[Iterable], List[T]]

Creates a list parser for lists of objects created with a given constructor. E.g:

parser = list_parser(bool)
parser(['', 1, None])

=> [False, True, False]

Parameters item_parser (Constructor[T]) – The constructor to apply to each element.

Returns Function that takes maps the constructor on to the iterable and returns the result as a list.

Return type Callable[[Iterable[Any]], List[T]]

redgrease.utils.dict_of(constructors: Dict[Key, Union[Type[Any], Callable[[Any], Any]]]) →
Callable[[Iterable, Iterable[Key]], Dict[Key, Any]]

Creates a parser that parses a list of values to a dict, according to a dict of named constructors.

The generated parser takes both the iterable of values to parse, as well as, an equally long, iterable of names/keys
to to use to lookup the corresponding parser/constructor in the constructor lookup dict.

The parser for the Nth value is using the parser found by looking up the Nth name/key in the key list in the
lookup dict. This key is also used as the key in the resulting dict.

116 Chapter 13. Utils Module

redgrease

E.g:

parser = dict_of({"b":bool, "i":int, "s":str, "f":float})
parser([0,1,0,1], ["b","f","s","i"])

=> {"b":False, "f":1.0, "i":1, "s":"0"}

Parameters constructors (Dict[str, Constructor[Any]]) – Dict of named con-
structors

Returns Dict parser

Return type Callable[.., Dict[str, Any]]

class redgrease.utils.Record(key: str, value: Optional[Any] = None, type: Optional[str] = None,
event: Optional[str] = None, **kwargs)

Class representing a Redis Record, as generated by KeysReader.

key
The name of the Redis key.

Type str

value
The value corresponting to the key. None if deleted.

Type Any

type
The core Redis type. Either ‘string’, ‘hash’, ‘list’, ‘set’, ‘zset’ or ‘stream’.

Type str

event
The event that triggered the execution. (None if the execution was created via the run function.)

Type str

class redgrease.utils.StreamRecord(key: str, id: Optional[str] = None, value: Optional[Any]
= None, **kwargs)

Class representing a Redis Record, as generated by KeysReader.

key
The name of the Redis key.

Type str

value
The value corresponting to the key. None if deleted.

Type Any

type
The core Redis type. Either ‘string’, ‘hash’, ‘list’, ‘set’, ‘zset’ or ‘stream’.

Type str

event
The event that triggered the execution. (None if the execution was created via the run function.)

Type str

redgrease.utils.record(rec: Any)→ redgrease.utils.Record
Create a Record

117

redgrease

Parameters rec (Any) – the value to parse. Either a string (key only) or a dict with at minimum
the key key present and optionally any of the keys value, type and/or event.

Returns Parsed Record object.

Return type Record

redgrease.utils.stream_record(rec: Any)→ redgrease.utils.StreamRecord
Create a Record

Parameters rec (Any) – the value to parse. Either a string (key only) or a dict with at minimum
the key key present and optionally any of the keys value, type and/or event.

Returns Parsed Record object.

Return type Record

redgrease.utils.compose(*function: Callable)→ Callable
Compose functions. I.e:

lambda x: f(g(x))

can be written:

compose(f, g)``

Parameters *function (Callable) – Any number of functions to compose together. Output
type of function N must be the input type of function N+1.

Returns A composed function with input type same as the firs function, and output type same as
the last function.

Return type Callable

redgrease.utils.dict_filter(**kwargs)→ Callable[[Dict[str, Any]], bool]
Create a dictionary matching predicate function.

This function takes any number of keyword arguments, and returns a predicate function that takes a single dict
as argument and returns a bool.

The predicate function returns True if, and only if, for all keyword arguments:

1. The keyword argument name is a key in the dict, and

2. Depending on the value, V, of the keyword argument, either:

• V is Container type (excluding str) The dict value for the key is present in V

• V is a Type (e.g. bool) The dict value for the key is of type V.

• V is any value, except ... (Ellipsis) The dict value for the key equals V.

• V is ... (Ellipsis) The dict value can be any value.

redgrease.utils.passfun(fun: Optional[T] = None, default: Optional[T] = None)→ T
Create a Python ‘function’ object from any ‘Callable’, or constant.

RedisGears operator callbacks ony accept proper ‘function’s and not every type of ‘Callable’, such as for ex-
ample ‘method’s (e.g. redgrease.cmd.incr) or ‘method-desriptor’s (e.g. str.split), which forces users to write
seemingly “unnecessary” lambda-functions to wrap these.

This function ensures that the argument is a proper ‘function’, and thus will be accepted as RedisGears operator
callback (assuming the type signature is correct).

118 Chapter 13. Utils Module

redgrease

It can also be used to create ‘constant’-functions, if passing a non-callable, or to create the ‘identity-function`,
if called with no arguments.

Parameters

• fun (Optional[T], optional) – Callable to turn into a ‘function` Alternatively a
constant, to use to create a constant function, i.e. a function that alway return the same
thing, regarding of input. If None, and no default, the ‘identity-function’ is returned.
Defaults to None.

• default (Optional[T], optional) – Default Callable to use as fallback if the
‘fun’ argument isn’t a callable. Defaults to None.

Returns [description]

Return type T

119

redgrease

120 Chapter 13. Utils Module

CHAPTER

FOURTEEN

TYPING MODULE

Type variables, Type aliases and Protocol Types.

redgrease.typing.InputRecord
Type variable for the input value of a GearFunction step / operation.

alias of TypeVar(‘InputRecord’, contravariant=True)

redgrease.typing.OutputRecord
Type variable for the output value of a GearFunction step / operation.

alias of TypeVar(‘OutputRecord’, covariant=True)

redgrease.typing.Key
Type variable for a Keys used in extractor functions in GroupBy operations and similar.

alias of TypeVar(‘Key’, contravariant=True)

redgrease.typing.Val
Type variable for intermediate values inside a step / operation.

alias of TypeVar(‘Val’)

redgrease.typing.Constructor
Joint type for primitive Types and (single argument) object constructors

alias of Union[Type[T], Callable[[Any], T]]

redgrease.typing.RedisType
Types native to Redis

alias of Union[bytes, int, float]

redgrease.typing.SafeType
Types that Redis happily accepts as input without any manipulation.

alias of Union[bytes, int, float, str]

redgrease.typing.SupportedType
Types that RedGrease supports

alias of Union[bool, str, bytes, int, float]

redgrease.typing.RedisKey
Accepted types for Redis Keys

alias of Union[str, bytes]

redgrease.typing.Record
The type of a record from KeysReader and others.

alias of Dict

121

redgrease

redgrease.typing.Registrator
“Type definition for Registrator functions.

I.e. callback functions that may be called on each shard upon function registration. Such functions provide a
good place to initialize non-serializable objects such as network connections.

An function of Registrator type shoud take no arguments, nor return any value.

alias of Callable[[], None]

redgrease.typing.Extractor
Type definition for Extractor functions.

Extractor functions are used in the following operations:

• LocalGroupBy

• Repartition

• AggregateBy

• GroupBy

• BatchGroupBy

• CountBy

• Avg

Extractor functions extracts or calculates the value that should be used as (grouping) key, from an input record
of the operation.

Parameters (InputRecord) - A single input-record, of the same type as the

operations’ input type.

Returns A any ‘Hashable’ value.

Return type Key

Example - Count users per supervisor:

Function of "Extractor" type
Extracts the "supervisor" for a user,
If the user has no supervisor, then the user is considered its own supervisor.
def supervisor(user)

return user.get("supervisor", user["id"])

KeysReader("user:*").values().countby(supervisor).run()

alias of Callable[[InputRecord], Key]

redgrease.typing.Mapper
Type definition for Mapper functions.

Mapper functions are used in the following operations:

• Map

Mapper functions transforms a value from the operations input to some new value.

Parameters (InputRecord) - A single input-record, of the same type as the

operations’ input type.

Returns A any value.

Return type OutputRecord

122 Chapter 14. Typing Module

redgrease

alias of Callable[[InputRecord], OutputRecord]

redgrease.typing.Expander
Type definition forExpander functions.

Expander functions are used in the following operations:

• FlatMap

Expander functions transforms a value from the operations input into several new values.

Parameters (InputRecord) - A single input-record, of the same type as the

operations’ input type.

Returns An iterable sequence of values, for example a list, each of which becomes an input to the
next operation.

Return type Iterable[OutputRecord]

alias of Callable[[InputRecord], Iterable[OutputRecord]]

redgrease.typing.Processor
Type definition forProcessor functions.

Processor functions are used in the following operations:

• ForEach

Processor functions performs some side effect using a value from the operations input.

Parameters (InputRecord) - A single input-record, of the same type as the

operations’ input type.

Returns Nothing.

Return type None

alias of Callable[[InputRecord], None]

redgrease.typing.Filterer
Type definition forFilterer functions.

Filterer functions are used in the following operations:

• Filter

Filter functions evaluates a value from the operations input to either True or False.

Parameters (InputRecord) - A single input-record, of the same type as the

operations’ input type.

Returns Either True or False.

Return type bool

alias of Callable[[InputRecord], bool]

redgrease.typing.Accumulator
Type definition forAccumulator functions.

Accumulator functions are used in the following operations:

• Accumulate

• Aggregate

123

redgrease

Accumulator functions takes a variable that’s also called an accumulator, as well as an input record. It aggregates
inputs into the accumulator variable, which stores the state between the function’s invocations. The function
must return the accumulator’s updated value after each call.

Parameters

• (T) - An accumulator value.

• (InputRecord) - A single input-record, of the same type as the operations’ input

type.

Returns The updated accumulator value.

Return type T

alias of Callable[[T, InputRecord], T]

redgrease.typing.Reducer
Type definition forReducer functions.

Reducer functions are used in the following operations:

• LocalGroupBy

• AggregateBy

• GroupBy

Reducer functions receives a key, a variable that’s called an accumulator and an an input. It performs similarly
to the redgrease.typing.Accumulator callback, with the difference being that it maintains an
accumulator per reduced key.

Parameters

• (Key) - A key value for the group.

• (T) - An accumulator value.

• (InputRecord) - A single input-record, of the same type as the operations’ input

type.

Returns The updated accumulator value.

Return type T

alias of Callable[[Key, T, InputRecord], T]

redgrease.typing.BatchReducer
Type definition forBatchReducer functions.

BatchReducer functions are used in the following operations:

• BatchGroupBy

BatchReducer functions receives a key and a list of input records. It performs similarly to the redgrease.
typing.Reducer callback, with the difference being that it is input with a list of records instead of a
single one. It is expected to return an accumulator value for these records

Parameters

• (Key) - A key value for the group.

• (Iterable[InputRecord]) - A collection of input-record, of the same type as the

124 Chapter 14. Typing Module

redgrease

operations’ input type.

Returns A reduced output value.

Return type OutputRecord

alias of Callable[[Key, Iterable[InputRecord]], OutputRecord]

125

redgrease

126 Chapter 14. Typing Module

CHAPTER

FIFTEEN

DATA MODULE

Datatypes and parsers for the various structures, specific to Redis Gears.

These datatypes are returned from various redgrease functions, merely for the purpose of providing more convenient
structure, typing and documentation compared to the native ‘list-based’ structures.

They are generally not intended to be instantiated by end-users.

class redgrease.data.ExecID(shard_id: str = '00',
sequence: int = 0)

Execution ID

shard_id
Shard Identifier

Type str

sequence
Sequence number

Type in

Method generated by attrs for class ExecID.

static parse(value: Union[str, bytes])→ redgrease.data.ExecID
Parses a string or bytes representation into a redgrease.data.ExecID

Returns The parsed ExecID

Return type redgrease.data.ExecID

Raises ValueError – If the the value cannot be parsed.

class redgrease.data.ExecutionResult(value: T, errors: Optional[List] = None)
Common class for all types of execution results. Generic / Polymorphic on the result type (T) of the Gears
function.

Redis Gears specifies a few different commands for getting the results of a function execution (pyexecute,
getresults, getresultsblocking and trigger), each potentially having more than one different possible value type,
depending on context.

In addition, while most gears functions result in collection of values, some functions (notably those ending with
a count or avg operation) semantically always have scalar results, but are still natively returned as a list.

redgrease.data.ExecutionResult is a unified result type for all scenarios, aiming at providing as intuitive API
experience as possible.

It is generic and walks and quacks just like the main result type (T) it wraps. With some notable exceptions:

• It has an additional property errors containing any accumulated errors

• Scalar results, behaves like scalars, but also like a single element list.

127

redgrease

This behavior isn’t always perfect but gives for the most part an intuitive api experience.

If the behavior in some situations are confusing, the raw wrapped value can be accessed through the value
property.

property value
Gets the raw result value of the Gears function execution.

Returns The result value / values

Return type T

redgrease.data.parse_execute_response(response)→ redgrease.data.ExecutionResult
Parses raw responses from pyexecute, getresults and getresultsblocking into a redgrease.data.ExecuteResponse
object.

Parameters response (Any) – The raw gears function response. This is most commonly a tuple
of a list with the actual results and a list of errors List[List[Union[T, Any]]].

For some scenarios the response may take other forms, like a simple Ok (e.g. in the absence
of a closing run() operation) or an execution ID (e.g. for non-blocking executions).

Returns A parsed execution response

Return type ExecutionResult[T]

redgrease.data.parse_trigger_response(response)→ redgrease.data.ExecutionResult
Parses raw responses from trigger into a redgrease.data.ExecuteResponse object.

Parameters

• response (Any) – The gears function response. This is a tuple of a list with the actual
results and a list of errors List[List[Union[T, Any]]].

• pickled (bool, optional) – Indicates if the response is pickled and need to be
unpickled. Defaults to False.

Returns A parsed execution response

Return type ExecutionResult[T]

class redgrease.data.ExecutionStatus(value)
Representation of the various states an execution could be in.

created = b'created'
Created - The execution has been created.

running = b'running'
Running - The execution is running.

done = b'done'
Done - Thee execution is done.

aborted = b'aborted'
Aborted - The execution has been aborted.

pending_cluster = b'pending_cluster'
Pending Cluster - Initiator is waiting for all workers to finish.

pending_run = b'pending_run'
Pending Run - Worker is pending ok from initiator to execute.

pending_receive = b'pending_receive'
Pending Receive - Initiator is pending acknowledgement from workers on receiving execution.

128 Chapter 15. Data Module

redgrease

pending_termination = b'pending_termination'
Pending Termination - Worker is pending termination messaging from initiator

class redgrease.data.ExecLocality(value)
Locality of execution: Shard or Cluster

class redgrease.data.RedisObject
Base class for many of the more complex Redis Gears configuration values

classmethod from_redis(params)→ redgrease.data.RedisObject
Default parser

Assumes the object is seralized as a list of alternating attribute names and values.

Note: This method should not be invoked directly on the ‘RedisObject’ base class. It should be only be
invoked on subclasses of RedisObjects.

Returns Returns the RedisObject subclass if, and only if, its constructor argument names and
value types exactly match the names and values in the input list.

Return type RedisObject

Raises TypeError – If either the input list contains attributes not defined in the subclass
constructor, or if the subclass defines mandatory constructor arguments that are not present
in the input list.

redgrease.data.parse_PD(value: Union[str, bytes])→ Dict
Parses str or bytes to a dict.

Used for the ‘PD’ field in the ‘Registration’ type, returned by ‘getregistrations’.

Parameters value (Union[str,bytes]) – Serialized version of a dict.

Returns A dictionary

Return type Dict

class redgrease.data.ExecutionInfo(executionId, status, registered)
Return object for redgrease.client.Redis.dumpexecutions command.

Method generated by attrs for class ExecutionInfo.

executionId: redgrease.data.ExecID
The execution Id

status: redgrease.data.ExecutionStatus
The status

registered: bool
Indicates whether this is a registered execution

class redgrease.data.RegData(mode, numTriggered: int, numSuccess: int, numFailures: int, num-
Aborted: int, lastError: str, args, status=None)

Object reprenting the values for the Registration.RegistrationData, part of the return value of red-
grease.client.dupregistrations command.

Method generated by attrs for class RegData.

mode: str
Registration mode.

numTriggered: int
A counter of triggered executions.

numSuccess: int
A counter of successful executions.

129

redgrease

numFailures: int
A counter of failed executions.

numAborted: int
A conter of aborted executions.

lastError: str
The last error returned.

args: Dict[str, Any]
Reader-specific arguments

status: Optional[bool]
Undocumented status field

class redgrease.data.Registration(id, reader, desc: str, RegistrationData, PD)
Return object for redgrease.client.Redis.dumpregistrations command. Contains the information about a function
registration.

Method generated by attrs for class Registration.

id: redgrease.data.ExecID
The registration ID.

reader: str
The Reader.

desc: str
The description.

RegistrationData: redgrease.data.RegData
Registration Data, see RegData.

PD: Dict[Any, Any]
Private data

class redgrease.data.ExecutionStep(type, duration: int, name, arg)
Object reprenting a ‘step’ in the ExecutionPlan.steps, attribute of the return value of red-
grease.client.getexecution command.

Method generated by attrs for class ExecutionStep.

type: str
Step type.

duration: int
The step’s duration in milliseconds (0 when ProfileExecutions is disabled)

name: str
Step callback

arg: str
Step argument

class redgrease.data.ExecutionPlan(status, shards_received: int, shards_completed: int, re-
sults: int, errors: int, total_duration: int, read_duration:
int, steps)

Object representing the execution plan for a given shard in the response from the red-
grease.client.Redis.getexecution command.

Method generated by attrs for class ExecutionPlan.

status: redgrease.data.ExecutionStatus
The current status of the execution.

130 Chapter 15. Data Module

redgrease

shards_received: int
Number of shards that received the execution.

shards_completed: int
Number of shards that completed the execution.

results: int
Count of results returned.

errors: int
Count of the errors raised.

total_duration: int
Total execution duration in milliseconds.

read_duration: int
Reader execution duration in milliseconds.

steps: List[redgrease.data.ExecutionStep]
The steps of the execution plan.

static parse(res: Iterable[bytes])→ Dict[str, redgrease.data.ExecutionPlan]
Parse the raw results of redgrease.client.Redis.getexecution into a dict that maps from shard identifiers to
ExecutionStep objects.

Returns Execution plan mapping.

Return type Dict[str, ExecutionPlan]

class redgrease.data.ShardInfo(id, ip, port: int, unixSocket, runid, minHslot: int, maxHslot: int,
pendingMessages: int)

Object representing a shard in the ClusterInfo.shards attribute in the response from red-
grease.client.Redis.infocluster command.

Method generated by attrs for class ShardInfo.

id: str
The shard’s identifier int the cluster.

ip: str
The shard’s IP address.

port: int
The shard’s port.

unixSocket: str
The shards UDS.

runid: str
The engines run identifier.

minHslot: int
Lowest hash slot served by the shard.

maxHslot: int
Highest hash slot served by the shard.

pendingMessages: int
Number of pending messages

class redgrease.data.ClusterInfo(my_id: str, my_run_id: str, shards)
Information about the Redis Gears cluster.

Return object for redgrease.client.Redis.infocluster command.

131

redgrease

Method generated by attrs for class ClusterInfo.

my_id: str
The identifier of the shard the client is connected to.

shards: List[redgrease.data.ShardInfo]
List of the all the shards in the cluster.

static parse(res: bytes)→ Optional[redgrease.data.ClusterInfo]
Parses the response from redgrease.client.Redis.infocluster into a ClusterInfo object.

If the client is not connected to a Redis Gears cluster, None is returned.

Returns A ClusterInfo object or None (if not in cluster mode).s

Return type Optional[ClusterInfo]

class redgrease.data.PyStats(TotalAllocated: int, PeakAllocated: int, CurrAllocated: int)
Memory usage statistics from the Python interpreter. As returned by redgrease.client.Redis.pystats

Method generated by attrs for class PyStats.

TotalAllocated: int
A total of all allocations over time, in bytes.

PeakAllocated: int
The peak allocations, in bytes.

CurrAllocated: int
The currently allocated memory, in bytes.

class redgrease.data.PyRequirementInfo(GearReqVersion: int, Name, IsDownloaded, IsIn-
stalled, CompiledOs, Wheels)

Information about a Python requirement / dependency.

Method generated by attrs for class PyRequirementInfo.

GearReqVersion: int
An internally-assigned version of the requirement. (note: this isn’t the package’s version)

Name: str
The name of the requirement as it was given to the ‘requirements’ argument of the pyexecute command.

IsDownloaded: bool
True if the requirement wheels was successfully download, otherwise False.

IsInstalled: bool
True if the requirement wheels was successfully installed, otherwise False.

CompiledOs: str
The underlying Operating System

Wheels: List[str]
A List of Wheels required by the requirement.

132 Chapter 15. Data Module

CHAPTER

SIXTEEN

ADVANCED CONCEPTS

This section discuss some more advanced topics, considerations an usage patterns.

16.1 Redgrease Extras Options

It is always recommended to install either the redgrease package with either redgrease[client],
redgrease[cli] or redgrease[all] package options on your clients.

However for the RedisGears server runtime, you may want to be more prudent with what you install. Therefore,
RedGrease strives to give you visibility and control of control of how much of RedGrease you want to install on on
your RedisGear server.

For the server you may want to consider these different options:

• redgrease[runtime]

This is the default and recommended package is to install on your server as this gives you access
to every runtime feature in RedGrease, including all the GearFunction constructs, the Serverside
Redis Commands, as well as the Builtin Runtime Functions.

This is what Gears.pyexecute() is going to automatically assume for you when you pass any
dynamic GearFunction to it, or if you set the enforce_redgrease argument to either True or
just a version string (e.g. "0.3.12").

This option installs all the dependencies that are needed for any of the RedGrease runtime features,
but none of the dependencies that are only required for the RedGrease client features.

• redgrease

You can also install just the bare redgrease package without any dependencies. This limits
the RedGrease functionalities that you can use to the ones provided by the “Clean” RedGrease
Modules.

Most notably this will prevent you from using the Serverside Redis Commands.

To enforce this option, ensure that any calls to Gears.pyexecute() explicitly set the
enforce_redgrease argument to "redgrease" (without extras). Version qualifiers are sup-
ported (e.g. "redgrease>0.3").

• Nothing

Yes, In some cases RedGrease may be of value even if it is not installed in the RedisGears runtime
environment. If your are only executing GearFunctions by Script File Path, and the script itself is
either:

133

redgrease

A. Not importing redgrease at all (obviously), or

B. Only using explicitly imported Builtin Runtime Functions, I.e. only import-
ing RedGrease with:

from redgrease.runtime import ...

If this is the case, you can enforce that RedGrease is not added to the runtime require-
ments at all by ensuring that any calls to Gears.pyexecute() explicitly set the
enforce_redgrease argument to False. This option will not add any redgrease
requirement to the function and simply ignore any explicit runtime imports.

Note: This only applies to explicit imports of symbols in the runtime module, and
not to imports of the module itself.

I.e, imports of the form:

from redgrease.runtime import GB, hashtag

Or:

from redgrease.runtime import *

But not:

import redgrease.runtime

Nor:

from redgrease import GB, hashtag

16.1.1 Dependency Packages per Option

The dependencies of the different extras options are as follows:

• redgrease

– Clean. No dependencies. See “Clean” RedGrease Modules for a list of RedGrease modules that can be
used.

• redgrease[runtime]

– attrs - This dependency may be removed in future versions.

– cloudpickle - This dependency may be replaced with dill in future versions.

– redis

– packaging - This dependency may be moved to the client extra in future versions.

– wrapt - This dependency may be removed in future versions.

• redgrease[client]

– All the dependencies of redgrease[runtime], plus

– typing-extensions

– redis-py-cluster - This dependency may be moved to a new cluster extra in future versions.

134 Chapter 16. Advanced Concepts

https://pypi.org/project/attrs/
https://pypi.org/project/cloudpickle/
https://pypi.org/project/dill/
https://pypi.org/project/redis/
https://pypi.org/project/packaging/
https://pypi.org/project/wrapt/
https://pypi.org/project/typing-extensions/
https://pypi.org/project/redis-py-cluster/

redgrease

• redgrease[cli]

– All the dependencies of redgrease[client], plus

– watchdog

– ConfigArgParse

– pyyaml

• redgrease[all]

– All dependencies above

16.1.2 “Clean” RedGrease Modules

The “clean” RedGrease modules, that can be used without extra dependencies are:

• redgrease.runtime - Wrapped versions of the built-in runtime functions, but with docstrings and type
hints.

• redgrease.reader - GearFunction constructors for the various Reader types.

• redgrease.func - Function decorator for creating CommandReader functions.

• redgrease.utils - A bunch of helper functions.

• redgrease.sugar - Some trivial sugar for magic strings and such.

• redgrease.typing - A bunch of type helpers, typically not needed to be imported in application code.

• redgrease.gears - The core internals of RedGrease, rarely needed to be imported in application code.

• redgrease.hysteresis - A helper module, specifically for the RedGrease CLI. Not intended to be im-
ported in application code.

16.2 Python 3.6 and 3.8+

Dynamically created GearFunction objects can only be executed if the client Python version match (major and minor
version) the Python version of the RedisGears runtime. At the moment of writing, RedisGears version 1.0.6, is relying
on Python 3.7.

RedGrease does however support using any Python version after Python 3.6 inclusive, for all other functionalities.

You are still able to construct an run Gear functions using the RedGrease GearFunction objects, but only if executed
using Script File Path.

This means that you need to:

1. Put your Gear Function code in a separate file from your application code.

2. Ensure that the Gear Function script, only use Python 3.7 constructs.

3. Execute the function by passing the script file path to redgrease.client.Gears.pyexecute().

16.2. Python 3.6 and 3.8+ 135

https://pypi.org/project/watchdog/
https://pypi.org/project/ConfigArgParse/
https://pypi.org/project/PyYAML/

redgrease

16.3 Legacy Gear Scripts

You do not have to change any of your existing legacy scripts to start using RedGrease.

RedGrease support running “vanilla” RedisGears Gear functions, i.e. without any RedGrease features, by execution
using Script File Path.

If you however need to modify any of your legacy scripts, it may be a good idea to add from redgrease import
execute, atomic, configGet, gearsConfigGet, hashtag, log, GearsBuilder, GB to the
import section of your script so that you get the benefits of autocompletion and write-time type checking (assuming
your IDE supports it).

Courtesy of : Pte. Ltd.

136 Chapter 16. Advanced Concepts

https://www.lyngon.com

CHAPTER

SEVENTEEN

SUPPORT

If you are having issues, or questions, feel free to check out the FAQ below or search the issues on the RedGrease
GitHub repository.

If you can’t find a satisfactory answer, feel to post it as an “issue” in RedGrease GitHub repository:

• Post a question

• Request a new feature

These will be addressed on a best-effort basis.

17.1 Professional Support

RedGrease is backed by Lyngon Pte. Ltd. and professional support with SLA’s can be provided on request. For
inquiries please send a mail to support@lyngon.com.

17.2 FAQ

17.2.1 Q: Can I use RedGrease for Commercial Applications?

A: Yes

RedGrease is licensed under the MIT license, which is a very permissive licence and allows for commercial use. The
same goes for Open Source Redis, which is licensed under the 3-Clause-BSD licence, and is similarly permissive.
However, the RedisGears module is licensed under a custom Redis Source Available License (RSAL), which limits
usage to “non-database products”.

17.2.2 Q: Can I run Redis Gears / RedGrease on AWS ElastiCache?

A: No

Unfortunately AWS ElastiCache does not (yet) support Redis modules, including Redis Gears.

137

https://github.com/lyngon/redgrease/issues
https://github.com/lyngon/redgrease/issues
https://github.com/lyngon/redgrease/issues/new?assignees=d00astro&labels=documentation%2C+question&template=question.md&title=%5BQUESTION%5D
https://github.com/lyngon/redgrease/issues/new?assignees=d00astro&labels=feature&template=new-feature-request.md&title=%5BFEATURE%5D
https://www.lyngon.com
mailto:support@lyngon.com
https://mit-license.org/
https://opensource.org/licenses/BSD-3-Clause
https://redislabs.com/wp-content/uploads/2019/09/redis-source-available-license.pdf

redgrease

17.2.3 Q: Why are there so many spelling mistakes?

A: The author suffers from mild dyslexia and has a had time spotting when a word isn’t right.

Hopefully the sub-par spelling is not indicative of the quality of the software.

17.3 Reporting issues

• Report a bug

138 Chapter 17. Support

https://en.wikipedia.org/wiki/Dyslexia
https://github.com/lyngon/redgrease/issues/new?assignees=d00astro&labels=bug&template=bug_report.md&title=%5BBUG%5D

CHAPTER

EIGHTEEN

CONTRIBUTE

Feel free to submit PRs.

18.1 Development Setup

After cloning or forking the repository, it is recommended to do the following:

1. In the project root, create and activate a Python 3.7 virtual environment. E.g:

cd redgrease

virtualenv -p python3.7 .venv

source .venv/bin/activate

2. Install the Development, Test and all package requirements:

pip install -r src/requirements-dev.txt

3. Install redgrease in “develop” mode:

pip install -e .

4. [optional] If you want to build the docs:

pip install -r docs/source/requirements.txt

Note: It is highly recommended to check / lint the code regularly (continuously) with:

black src/
flake8 src/
isort src/
mypy src/

139

redgrease

18.2 Local Testing

Sorry, this section is under construction!

To run the test, docker needs to be installed as it is used to spin up clean Redis instances.

Courtesy of : Pte. Ltd.

Courtesy of : Pte. Ltd.

140 Chapter 18. Contribute

https://www.lyngon.com
https://www.lyngon.com

PYTHON MODULE INDEX

r
redgrease.typing, 121

141

redgrease

142 Python Module Index

INDEX

A
Abort (redgrease.FailurePolicy attribute), 108
aborted (redgrease.data.ExecutionStatus attribute),

128
abortexecution() (redgrease.Gears method), 34
Accumulate (class in redgrease.gears), 84
accumulate() (redgrease.gears.OpenGearFunction

method), 73
accumulate() (redgrease.runtime.GearsBuilder

method), 59
Accumulator (in module redgrease.typing), 99, 123
Aggregate (class in redgrease.gears), 86
aggregate() (redgrease.gears.OpenGearFunction

method), 74
aggregate() (redgrease.runtime.GearsBuilder

method), 61
AggregateBy (class in redgrease.gears), 87
aggregateby() (redgrease.gears.OpenGearFunction

method), 75
aggregateby() (redgrease.runtime.GearsBuilder

method), 62
apply() (redgrease.reader.CommandReader method),

81
arg (redgrease.data.ExecutionStep attribute), 130
arg (redgrease.gears.Run attribute), 93
args (redgrease.data.RegData attribute), 130
args() (redgrease.reader.CommandReader method),

81
as_is() (in module redgrease.utils), 113
Async (redgrease.TriggerMode attribute), 107
AsyncLocal (redgrease.TriggerMode attribute), 107
atomic (class in redgrease.runtime), 51
Avg (class in redgrease.gears), 91
avg() (redgrease.gears.OpenGearFunction method), 77
avg() (redgrease.runtime.GearsBuilder method), 65

B
BatchGroupBy (class in redgrease.gears), 89
batchgroupby() (red-

grease.gears.OpenGearFunction method),
76

batchgroupby() (redgrease.runtime.GearsBuilder
method), 63

BatchReducer (in module redgrease.typing), 100, 124
bool_ok() (in module redgrease.utils), 113

C
CaseInsensitiveDict (class in redgrease.utils),

113
ClosedGearFunction (class in redgrease.gears), 78
ClusterInfo (class in redgrease.data), 131
Collect (class in redgrease.gears), 86
collect (redgrease.gears.Register attribute), 94
collect (redgrease.gears.Run attribute), 93
collect() (redgrease.gears.OpenGearFunction

method), 74
collect() (redgrease.runtime.GearsBuilder method),

61
combOp (redgrease.gears.Aggregate attribute), 87
combOp (redgrease.gears.AggregateBy attribute), 87
command() (in module redgrease), 106
CommandReader (class in redgrease.reader), 81
CommandReader (redgrease.ReaderType attribute),

107
CompiledOs (redgrease.data.PyRequirementInfo at-

tribute), 132
compose() (in module redgrease.utils), 118
Config (class in redgrease.config), 37
configGet() (in module redgrease.runtime), 52
Constructor (in module redgrease.typing), 121
Continue (redgrease.FailurePolicy attribute), 108
convertToStr (redgrease.gears.Register attribute),

94
convertToStr (redgrease.gears.Run attribute), 93
Count (class in redgrease.gears), 90
count() (redgrease.gears.OpenGearFunction method),

77
count() (redgrease.runtime.GearsBuilder method), 64
CountBy (class in redgrease.gears), 91
countby() (redgrease.gears.OpenGearFunction

method), 77
countby() (redgrease.runtime.GearsBuilder method),

65

143

redgrease

created (redgrease.data.ExecutionStatus attribute),
128

CreateVenv() (redgrease.config.Config property), 38
CurrAllocated (redgrease.data.PyStats attribute),

132

D
Debug (redgrease.LogLevel attribute), 109
DependenciesSha256() (redgrease.config.Config

property), 38
DependenciesUrl() (redgrease.config.Config prop-

erty), 38
desc (redgrease.data.Registration attribute), 130
dict_filter() (in module redgrease.utils), 118
dict_of() (in module redgrease.utils), 116
Distinct (class in redgrease.gears), 90
distinct() (redgrease.gears.OpenGearFunction

method), 76
distinct() (redgrease.runtime.GearsBuilder

method), 64
done (redgrease.data.ExecutionStatus attribute), 128
DownloadDeps() (redgrease.config.Config property),

38
dropexecution() (redgrease.Gears method), 35
dumpexecutions() (redgrease.Gears method), 32
dumpregistrations() (redgrease.Gears method),

33
duration (redgrease.data.ExecutionStep attribute),

130

E
errors (redgrease.data.ExecutionPlan attribute), 131
event (redgrease.utils.Record attribute), 117
event (redgrease.utils.StreamRecord attribute), 117
ExecID (class in redgrease.data), 127
ExecLocality (class in redgrease.data), 129
execute() (in module redgrease.runtime), 51
executionId (redgrease.data.ExecutionInfo at-

tribute), 129
ExecutionInfo (class in redgrease.data), 129
ExecutionMaxIdleTime() (red-

grease.config.Config property), 38
ExecutionPlan (class in redgrease.data), 130
ExecutionResult (class in redgrease.data), 127
ExecutionStatus (class in redgrease.data), 128
ExecutionStep (class in redgrease.data), 130
ExecutionThreads() (redgrease.config.Config

property), 38
Expander (in module redgrease.typing), 98, 123
Extractor (in module redgrease.typing), 97, 122
extractor (redgrease.gears.AggregateBy attribute),

87
extractor (redgrease.gears.Avg attribute), 91

extractor (redgrease.gears.BatchGroupBy attribute),
89

extractor (redgrease.gears.CountBy attribute), 91
extractor (redgrease.gears.GroupBy attribute), 88
extractor (redgrease.gears.LocalGroupBy attribute),

85

F
Filter (class in redgrease.gears), 84
filter() (redgrease.gears.OpenGearFunction

method), 72
filter() (redgrease.runtime.GearsBuilder method),

59
Filterer (in module redgrease.typing), 99, 123
FlatMap (class in redgrease.gears), 83
flatmap() (redgrease.gears.OpenGearFunction

method), 72
flatmap() (redgrease.runtime.GearsBuilder method),

58
ForEach (class in redgrease.gears), 84
foreach() (redgrease.gears.OpenGearFunction

method), 72
foreach() (redgrease.runtime.GearsBuilder method),

58
from_redis() (redgrease.data.RedisObject class

method), 129

G
Gear Function, 8
GearFunction, 8
gearfunction() (redgrease.runtime.GearsBuilder

property), 55
GearReqVersion (redgrease.data.PyRequirementInfo

attribute), 132
GearsBuilder (class in redgrease.runtime), 55
gearsConfigGet() (in module redgrease.runtime),

52
get() (redgrease.config.Config method), 37
get() (redgrease.utils.CaseInsensitiveDict method),

113
get_single() (redgrease.config.Config method), 37
getexecution() (redgrease.Gears method), 36
getresults() (redgrease.Gears method), 33
GroupBy (class in redgrease.gears), 88
groupby() (redgrease.gears.OpenGearFunction

method), 75
groupby() (redgrease.runtime.GearsBuilder method),

63

H
Hash (redgrease.KeyType attribute), 108
hashtag() (in module redgrease.runtime), 53
hashtag3() (in module redgrease.runtime), 53

144 Index

redgrease

I
id (redgrease.data.Registration attribute), 130
id (redgrease.data.ShardInfo attribute), 131
infocluster() (redgrease.Gears method), 36
InputRecord (in module redgrease.typing), 121
ip (redgrease.data.ShardInfo attribute), 131
IsDownloaded (redgrease.data.PyRequirementInfo at-

tribute), 132
IsInstalled (redgrease.data.PyRequirementInfo at-

tribute), 132

K
Key (in module redgrease.typing), 121
key (redgrease.utils.Record attribute), 117
key (redgrease.utils.StreamRecord attribute), 117
keys() (redgrease.reader.KeysReader method), 79
keys() (redgrease.reader.StreamReader method), 80
KeysOnlyReader (class in redgrease.reader), 80
KeysOnlyReader (redgrease.ReaderType attribute),

107
KeysReader (class in redgrease.reader), 78
KeysReader (redgrease.ReaderType attribute), 107

L
lastError (redgrease.data.RegData attribute), 130
length (redgrease.gears.Limit attribute), 85
Limit (class in redgrease.gears), 85
limit() (redgrease.gears.OpenGearFunction method),

73
limit() (redgrease.runtime.GearsBuilder method), 60
List (redgrease.KeyType attribute), 108
list_parser() (in module redgrease.utils), 116
LocalGroupBy (class in redgrease.gears), 85
localgroupby() (red-

grease.gears.OpenGearFunction method),
73

localgroupby() (redgrease.runtime.GearsBuilder
method), 60

log() (in module redgrease.runtime), 54

M
Map (class in redgrease.gears), 83
map() (redgrease.gears.OpenGearFunction method), 71
map() (redgrease.runtime.GearsBuilder method), 58
Mapper (in module redgrease.typing), 98, 122
MaxExecutions() (redgrease.config.Config prop-

erty), 37
MaxExecutionsPerRegistration() (red-

grease.config.Config property), 37
maxHslot (redgrease.data.ShardInfo attribute), 131
minHslot (redgrease.data.ShardInfo attribute), 131
mode (redgrease.data.RegData attribute), 129
mode (redgrease.gears.Register attribute), 94

module
redgrease.data, 127
redgrease.typing, 121
redgrease.utils, 113

Module (redgrease.KeyType attribute), 108
my_id (redgrease.data.ClusterInfo attribute), 132

N
name (redgrease.data.ExecutionStep attribute), 130
Name (redgrease.data.PyRequirementInfo attribute), 132
Notice (redgrease.LogLevel attribute), 109
numAborted (redgrease.data.RegData attribute), 130
numFailures (redgrease.data.RegData attribute), 129
numSuccess (redgrease.data.RegData attribute), 129
numTriggered (redgrease.data.RegData attribute),

129

O
on() (redgrease.ClosedGearFunction method), 47
on() (redgrease.gears.ClosedGearFunction method),

44, 78
onRegistered (redgrease.gears.Register attribute),

94
op (redgrease.gears.FlatMap attribute), 83
op (redgrease.gears.Map attribute), 83
OpenGearFunction (class in redgrease.gears), 69
optional() (in module redgrease.utils), 114
OutputRecord (in module redgrease.typing), 121

P
parse() (redgrease.data.ClusterInfo static method),

132
parse() (redgrease.data.ExecID static method), 127
parse() (redgrease.data.ExecutionPlan static method),

131
parse_execute_response() (in module red-

grease.data), 128
parse_PD() (in module redgrease.data), 129
parse_trigger_response() (in module red-

grease.data), 128
passfun() (in module redgrease.utils), 118
PD (redgrease.data.Registration attribute), 130
PeakAllocated (redgrease.data.PyStats attribute),

132
pending_cluster (redgrease.data.ExecutionStatus

attribute), 128
pending_receive (redgrease.data.ExecutionStatus

attribute), 128
pending_run (redgrease.data.ExecutionStatus at-

tribute), 128
pending_termination (red-

grease.data.ExecutionStatus attribute), 128
pendingMessages (redgrease.data.ShardInfo at-

tribute), 131

Index 145

redgrease

port (redgrease.data.ShardInfo attribute), 131
prefix (redgrease.gears.Register attribute), 94
Processor (in module redgrease.typing), 99, 123
ProfileExecutions() (redgrease.config.Config

property), 38
pydumpreqs() (redgrease.Gears method), 35
pyexecute() (redgrease.Gears method), 31, 45
PyRequirementInfo (class in redgrease.data), 132
PyStats (class in redgrease.data), 132
pystats() (redgrease.Gears method), 35
PythonAttemptTraceback() (red-

grease.config.Config property), 38
PythonInstallationDir() (red-

grease.config.Config property), 38
PythonInstallReqMaxIdleTime() (red-

grease.config.Config property), 39
PythonReader (class in redgrease.reader), 81
PythonReader (redgrease.ReaderType attribute), 107

R
read_duration (redgrease.data.ExecutionPlan at-

tribute), 131
reader (redgrease.data.Registration attribute), 130
reader() (redgrease.runtime.GearsBuilder property),

65
Record (class in redgrease.utils), 117
Record (in module redgrease.typing), 121
record() (in module redgrease.utils), 117
records() (redgrease.reader.KeysReader method), 79
records() (redgrease.reader.StreamReader method),

80
redgrease.data

module, 127
redgrease.typing

module, 121
redgrease.utils

module, 113
redis (redgrease.config.Config attribute), 37
RedisKey (in module redgrease.typing), 121
RedisObject (class in redgrease.data), 129
RedisType (in module redgrease.typing), 121
Reducer (in module redgrease.typing), 100, 124
reducer (redgrease.gears.BatchGroupBy attribute), 89
reducer (redgrease.gears.GroupBy attribute), 88
reducer (redgrease.gears.LocalGroupBy attribute), 85
refreshcluster() (redgrease.Gears method), 36
RegData (class in redgrease.data), 129
Register (class in redgrease.gears), 94
register() (redgrease.gears.OpenGearFunction

method), 69
register() (redgrease.runtime.GearsBuilder

method), 56
registered (redgrease.data.ExecutionInfo attribute),

129

Registration (class in redgrease.data), 130
RegistrationData (redgrease.data.Registration at-

tribute), 130
Registrator (in module redgrease.typing), 97, 121
Repartition (class in redgrease.gears), 86
repartition() (redgrease.gears.OpenGearFunction

method), 74
repartition() (redgrease.runtime.GearsBuilder

method), 61
results (redgrease.data.ExecutionPlan attribute), 131
Retry (redgrease.FailurePolicy attribute), 108
reverse (redgrease.gears.Sort attribute), 90
Run (class in redgrease.gears), 93
run() (redgrease.gears.OpenGearFunction method), 69
run() (redgrease.runtime.GearsBuilder method), 55
runid (redgrease.data.ShardInfo attribute), 131
running (redgrease.data.ExecutionStatus attribute),

128

S
safe_bool() (in module redgrease.utils), 114
safe_str() (in module redgrease.utils), 113
safe_str_upper() (in module redgrease.utils), 113
SafeType (in module redgrease.typing), 121
SendMsgRetries() (redgrease.config.Config prop-

erty), 39
seqOp (redgrease.gears.Aggregate attribute), 86
seqOp (redgrease.gears.AggregateBy attribute), 87
sequence (redgrease.data.ExecID attribute), 127
Set (redgrease.KeyType attribute), 108
set() (redgrease.config.Config method), 37
shard_id (redgrease.data.ExecID attribute), 127
ShardInfo (class in redgrease.data), 131
shards (redgrease.data.ClusterInfo attribute), 132
shards_completed (redgrease.data.ExecutionPlan

attribute), 131
shards_received (redgrease.data.ExecutionPlan at-

tribute), 130
ShardsIDReader (class in redgrease.reader), 81
ShardsIDReader (redgrease.ReaderType attribute),

107
Sort (class in redgrease.gears), 90
sort() (redgrease.gears.OpenGearFunction method),

76
sort() (redgrease.runtime.GearsBuilder method), 64
start (redgrease.gears.Limit attribute), 85
status (redgrease.data.ExecutionInfo attribute), 129
status (redgrease.data.ExecutionPlan attribute), 130
status (redgrease.data.RegData attribute), 130
steps (redgrease.data.ExecutionPlan attribute), 131
str_if_bytes() (in module redgrease.utils), 113
Stream (redgrease.KeyType attribute), 108
stream_record() (in module redgrease.utils), 118
StreamReader (class in redgrease.reader), 80

146 Index

redgrease

StreamReader (redgrease.ReaderType attribute), 107
StreamRecord (class in redgrease.utils), 117
String (redgrease.KeyType attribute), 108
SupportedType (in module redgrease.typing), 121
supports_batch_mode() (red-

grease.runtime.GearsBuilder property),
65

supports_event_mode() (red-
grease.runtime.GearsBuilder property),
66

Sync (redgrease.TriggerMode attribute), 107

T
to_dict() (in module redgrease.utils), 115
to_int_if_bool() (in module redgrease.utils), 114
to_kwargs() (in module redgrease.utils), 116
to_list() (in module redgrease.utils), 114
to_redis_type() (in module redgrease.utils), 114
total_duration (redgrease.data.ExecutionPlan at-

tribute), 131
TotalAllocated (redgrease.data.PyStats attribute),

132
transform() (in module redgrease.utils), 115
trigger() (redgrease.Gears method), 34
type (redgrease.data.ExecutionStep attribute), 130
type (redgrease.utils.Record attribute), 117
type (redgrease.utils.StreamRecord attribute), 117

U
unixSocket (redgrease.data.ShardInfo attribute), 131
unregister() (redgrease.Gears method), 34
update() (redgrease.utils.CaseInsensitiveDict

method), 113

V
Val (in module redgrease.typing), 121
value (redgrease.utils.Record attribute), 117
value (redgrease.utils.StreamRecord attribute), 117
value() (redgrease.data.ExecutionResult property),

128
values() (redgrease.reader.KeysReader method), 78
values() (redgrease.reader.StreamReader method), 80
ValueTypes (redgrease.config.Config attribute), 37
Verbose (redgrease.LogLevel attribute), 109

W
Warning (redgrease.LogLevel attribute), 109
Wheels (redgrease.data.PyRequirementInfo attribute),

132

Z
zero (redgrease.gears.Aggregate attribute), 86
zero (redgrease.gears.AggregateBy attribute), 87
ZSet (redgrease.KeyType attribute), 108

Index 147

	Introduction
	What is Redis?
	What is Redis Gears?
	What is RedGrease?
	Example Use-Cases
	Glossary

	Quickstart Guide
	Running Redis Gears
	RedGrease Installation
	Basic Commands
	RedGrease Gear Function Comparisons
	Cache Get Command

	RedGrease Client
	Instantiation
	RedisGears Commands
	Get and Set Gears Configurations

	Executing Gear Functions
	Raw Function String
	Script File Path
	GearFunction Object
	pyexecute API Reference
	on API Reference

	Builtin Runtime Functions
	execute
	atomic
	configGet
	gearsConfigGet
	hashtag
	hashtag3
	log
	GearsBuilder

	GearFunction
	Open GearFunction
	Closed GearFunction
	KeysReader
	KeysOnlyReader
	StreamReader
	PythonReader
	ShardsIDReader
	CommandReader

	Operations
	Map
	FlatMap
	ForEach
	Filter
	Accumulate
	LocalGroupBy
	Limit
	Collect
	Repartition
	Aggregate
	AggregateBy
	GroupBy
	BatchGroupBy
	Sort
	Distinct
	Count
	CountBy
	Avg

	Actions
	Run
	Register

	Operation Callback Types
	Registrator
	Extractor
	Mapper
	Expander
	Processor
	Filterer
	Accumulator
	Reducer
	BatchReducer

	Serverside Redis Commands
	Syntactic Sugar
	Command Function Decorator
	Keywords

	Command Line Tool
	Utils Module
	Typing Module
	Data Module
	Advanced Concepts
	Redgrease Extras Options
	Python 3.6 and 3.8+
	Legacy Gear Scripts

	Support
	Professional Support
	FAQ
	Reporting issues

	Contribute
	Development Setup
	Local Testing

	Python Module Index
	Index

